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Abstract

In recent years Deep Learning has revolutionized many fields in computer science such
as Computer Vision (CV), Natural Language Processing (NLP), and Information Retrieval
(IR). For example, modern DL is at the core of systems that process large amounts of
complex data, such as images, video or text, and then retrieve information or even generate
semantically meaningful responses to queries within fractions of a second.

However, the (historic) data that is available for many potential applications brings new
problems that require human attention. The cleaning, preparing and annotation of data
can evolve into a similar issue as the search of a needle in a haystack: take too much time,
and increase costs. Some data may even never be annotated in sufficient detail and thus
require alternative solutions. In this cumulative dissertation, I address gaps in the literature
at three levels of the Machine Learning process, that enable modeling of complex data and
reduce cost of annotations.

The first objective considers issues with the retrieval of complex, unstructured and sparsely
annotated data from large (historic) databases. We proposed a metric learner [P1] that
learns a lower-dimensional representationof thedata and thus enables efficient Information
Retrieval. It jointly estimates a structure of the unstructured data and learns pairwise
similarity, such that a previously prohibitive distance metric can be calculated orders of
magnitudes faster.

The second objective consists of a unified Deep Active Learning (DAL) policy that reduces
the annotation costs in Deep Learning via the use of Active Learning. We propose Imitat-
ing Active Learner Ensembles (IALE) [P2], an Imitation Learning approach to DAL that
leverages a learner Deep Neural Network (DNN)’s state and uses different signals to learn
how to learn actively from multiple heuristics. Our method then acquires more informative
samples than any of these baseline heuristic.

The third objective considers cost-efficient learning of individual similarity functions, in
cases where Machine Learning models for Information Retrieval suffer from a semantic gap
in the problem domain. In [P3], we propose to learn similarity from few annotated samples
by combining fine-tuning of large pre-trained models with Active Learning sampling
methods to reduce cost. We present a user study that demonstrates the strong benefits of
the sampling method w.r.t. both cost and query difficulty.

To summarize, we contribute to Metric Learning, Deep Active Learning and Information
Retrieval, and show adaptive similarity search for unstructured data. Hence, our work
facilitates the efficient use of annotators’ time and the collection of high quality annotations,
even on highly complex data.
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Zusammenfassung

In den letzten Jahren haben tiefe lernende Verfahren die Informatik revolutioniert. So
bilden tiefe lernendeVerfahrenden Kern von Systemen, die großeMengen komplexerDaten
wie bspw. Bilder, Videos oder Texte verarbeiten, und innerhalb von Sekundenbruchteilen
semantisch aussagekräftige Antworten auf Anfragen finden oder sogar synthetisieren kön-
nen.

Die (historischen) Daten, die für viele potenzielle Anwendungen zur Verfügung stehen,
bringen jedoch neue Probleme mit sich, die menschliche Aufmerksamkeit erfordern. Die
Bereinigung, Aufbereitung undAnnotationdieserDatenentwickelt sich zu einemähnlichen
Problemwie die Suche nach dermetaphorischen Nadel im Heuhaufen: Die Arbeiten dauert
lange und treiben die Kosten in die Höhe. Manches kann sogar nie ausreichend annotiert
werden und erfordert daher alternative Lösungen. In dieser kumulativen Dissertation
befasse ich mich mit den Lücken in der Literatur auf drei Ebenen des maschinellen Ler-
nens. Meine Forschungsziele sind die Modellierung komplexer Daten per tiefer lernender
Verfahren sowie die Senkung der Kosten für Annotationen.

Das erste Ziel befasst sich mit der schnellen Ähnlichkeitssuche für komplexe, unstrukturi-
erte und spärlich annotierte Daten innerhalb von großen (historischen) Datenbeständen.
Wir stellen einen Ansatz des metrischen Lernens vor [P1], der eine niedrigdimensionale
Repräsentation der Daten erlernt und so ein effizientes Durchsuchen der Daten ermöglicht.
Das System lernt sowohl eine Struktur der unstrukturierten Daten und als auch ein Maß
einer paarweise Ähnlichkeit, so dass eine zuvor zu teure Distanzmetrik um Größenordnun-
gen schneller berechnet werden kann.

Das zweite Ziel besteht in der Entwicklung einer besseren Strategie für aktives Lernen für
tiefe lernende Verfahren, wodurch Annotationskosten reduziert werden. Wir stellen mit
Imitating Active Learner Ensembles [P2] ein Verfahren für aktives Lernen vor, das den
Zustand eines tiefen neuronalen Netzes nutzt, um selbst zu lernen, welche Strategie des
aktiven Lernens für das Zielnetz zu welchem Zeitpunkt einzusetzen ist. Unsere Methode
wählt informativere Daten zum Annotieren aus, als andere Basisheuristiken.

Das dritte Ziel ist das kosteneffiziente Lernen individueller Ähnlichkeitsfunktionen in
Fällen, in denen Modelle des maschinellen Lernens für die Ähnlichkeitssuche aufgrund
der semantischen Lücke in der Problemdomäne suboptimal sind. In [P3] stellen wir ein
Verfahren hierfür vor, welches eine Ähnlichkeitsmetrik von nur wenigen annotierten Daten
erlernt. Dazu kombinieren wir zur Kostenreduktion ein vortrainiertes Modell mit einer
optimierten Methodik des aktiven Lernens. Im Zuge einer Nutzerstudie zeigen wir die
Vorteile der Optimierung sowohl in Bezug auf die Kosten als auch auf die Schwierigkeit der
Annotationsaufgabe vor.

Zusammenfassend tragen wir zu den Themen des metrischen Lernens, des aktiven Ler-
nens von tiefen Verfahren, und des Informationsabrufs bei, und zeigen eine adaptive
Ähnlichkeitssuche für unstrukturierte Daten. Unsere Arbeit ermöglicht hierdurch eine
effizienter Nutzung der Zeit von Annotatoren und die Sammlung höherwertiger Annotatio-
nen, selbst bei der Verarbeitung von hochkomplexen Daten.

vii





Contents

List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

I Introduction 1

1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II Fundamentals and State of the Art 7

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Information Retrieval with Unstructured Trajectories . . . . . . . . . . . . . . . 9

2.1.1 Transport Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Similarity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Deep Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Siamese Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Triplet Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Deep Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Uncertainty Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Diversity Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Balanced Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Active Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Semantic Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Essential Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 User Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Sports Scene Retrieval Systems . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Trajectory Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Metric Learning for Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Limitations of current Information Retrieval methods . . . . . . . . . . 30

3.2 Deep Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Generative Active Learning . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Multi-Armed Bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Meta Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Limitations of current Deep Active Learning methods . . . . . . . . . . 35

3.3 Active Learning of Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Triplet Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Active Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



Contents

3.3.3 Conducting User Studies . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Limitations of current Active Similarity Learning methods . . . . . . . . 41

III Contributed Papers 43

4 Deep SiameseMetric Learning: A Highly Scalable Approach to Searching
Unordered Sets of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 IALE: Imitating Active Learner Ensembles . . . . . . . . . . . . . . . . . . . . 47

6 Active Learning of Ordinal Embeddings: A User Study on Football Data . . 49

IV Perspectives 51

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1 Sports Scene Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Addressed Literature Gaps in Deep Metric Learning . . . . . . . . . . . 53
7.1.2 Metric Learning Perspectives . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.3 Limitations of the Contributed Work . . . . . . . . . . . . . . . . . . . 54

7.2 Deep Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.1 Addressed Literature Gaps in Deep Metric Learning . . . . . . . . . . . 55
7.2.2 Deep Active Learning Perspectives . . . . . . . . . . . . . . . . . . . . 55
7.2.3 Limitations of the Contributed Work . . . . . . . . . . . . . . . . . . . 56

7.3 Active Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.1 Addressed Literature Gaps in Deep Metric Learning . . . . . . . . . . . 57
7.3.2 Active Metric Learning Perspectives . . . . . . . . . . . . . . . . . . . . 57
7.3.3 Limitations of the Contributed Work . . . . . . . . . . . . . . . . . . . 57

8 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1 Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A DeepSiameseMetric Learning: AHighly ScalableApproach to SearchingUnordered

Sets of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B IALE: Imitating Active Learner Ensembles . . . . . . . . . . . . . . . . . . . . . 86
C Active Learning of Ordinal Embeddings: A User Study on Football Data . . . . . 116

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



List of Symbols and Abbreviations

List of Abbreviations

Abbreviation Description

AI Artificial Intelligence

AL Active Learning

ALBL Active Learning by Learning

ANN Artificial Neural Network

AR Augmented Reality

AUC Area Under Curve

AutoML Automatic Machine Learning

BADGE Batch Active learning by Diverse Gradient Embeddings

BALD Bayesian Active Learning by Disagreement

BNN Bayesian neural network

cGAN conditional Generative Adversarial Network

CNN Convolutional Neural Network

COMB combination algorithm

CV Computer Vision

DAL Deep Active Learning

DB database

DFD Discrete Fréchet Distance

DL Deep Learning

DML Deep Metric Learning

DNN Deep Neural Network

DTW Dynamic Time Warping

EMD Earth Movers Distance

FAU Friedrich-Alexander-Universät Erlangen-Nürnberg

GAN Generative Adversarial Network

GDPR General Data Protection Regulation

IALE Imitating Active Learner Ensembles

IF Information Filtering

IL Imitation Learning

IR Information Retrieval

L2T Learning to teach

xi



List of Symbols and Abbreviations

Abbreviation Description

LCSS Longest Common Subsequence

LIME Local Interpretable Model-agnostic Explanations

LSA Linear Strategy Aggregation

LSTM Long Short-Term Memory

MAB Multi-Armed Bandit

MDS Multidimensional Scaling

ML Machine Learning

MLP Multilayer Perceptron

NAS Neural Architecture Search

NER Named Entity Recognition

NLP Natural Language Processing

OOD Out of Distribution

OT Optimal Transport

RF Radio Frequency

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SGNS Skip-Gram with Negative Sampling

SHAP SHapley Additive exPlanations

SSIM Structural Similarity Index Measure

t-SNE t-Distributed Stochastic Neighbor Embedding

TA-VAAL Task-Aware Variational Adversarial Learning

TCAV Testing with Concept Activation Vectors

tSTE t-Stochastic Triplet Embedding

VAAL Variational Adversarial Active Learning

VAE Variational Autoencoder

XAI eXplainable Artificial Intelligence

List of Symbols

Symbol Unit Description

𝑎 Action

𝐵 Batch

𝑑 Distance

xii



List of Symbols and Abbreviations

Symbol Unit Description

𝑓 Function representing a neural network

ℒ Loss function

𝑙2 Euclidean distance

𝑙∞ Chebyshev distance

𝒪 Landau’s symbol describing asymptotic behavior of
complexity

𝑝− Negative sample in a triplet

𝑝+ Positive sample in a triplet

𝑝 Anchor sample in a triplet

𝜋 Policy function

𝑄 Q function computing expected reward for an action given
a state

𝑅 Reward in Reinforcement Learning

𝑆 Similarity function

𝑆 State space

𝑠 State of a policy

𝑡 Triplet

𝑇 Set of triplets

𝜃 Parameters of a neural network

𝑥 Sample

𝒳 Dataset X

𝑦 Annotation or label

xiii





List of Figures

1 Optimal transport: Point wise Wasserstein transport and Hungarian solution. 10
2 Siamese Network learns distance embedding. . . . . . . . . . . . . . . . . . 11
3 Effect of triplet loss on anchor, positive sample and negative sample. . . . . 12
4 Human-in-the-loop schema for Active Learning with its main components. 14
5 Example batch of MNIST data for BALD and batchBALD algorithms. . . . . 17
6 Entropy, joint and conditional entropy, and mutual information. . . . . . . 20
7 User interface example for multiple-choice user study. . . . . . . . . . . . . 23

8 Word embeddings of related concepts like ’cat’ and ’kitten’ visualized. . . . 26
9 Trajectory segmented playing field and the segment matrix. . . . . . . . . . 27
10 Generative AL schema extends traditional AL loop with encoder and decoder. 30
11 Reinforced AL schema extends traditional AL loop with policy. . . . . . . . 31
12 Anchor with positive or negative samples of easy or hard similarity. . . . . . 36
13 Similarity query triplet with anchor and two options. . . . . . . . . . . . . . 40

xv





Part I

Introduction

1





1 Motivation

In recent years Deep Learning (DL) has revolutionized many fields in computer science such
as Computer Vision (CV), Natural Language Processing (NLP), and Information Retrieval
(IR). The adoption of deep learning came naturally to many real-world applications. For
many potential applications, (historic) data is available which can be used for learning.
However, the analogy of the needle in the haystack applies: even if the data can be cleaned
and prepared for learning, it may often still be too unstructured and lacking annotations,
that are mandatory for many of the most successful learning approaches.

First, such missing structure may be even more severe than simply missing labels, as the
fundamental comparability of two samples is not given, if the structure of the sample is
not provided. One example of this problem is the missing ordering of data of a sample of
multi-agent trajectory tracking like in the team sport football, where no global ordering
exists. There is a need for a robust method to estimate such ordering, especially in tasks
such as IR. A form of this task is similarity search, that relies on comparability of pairs of
samples to retrieve similar information from large databases.

Second, annotations may take the form of labels. The generation of high quality labels is
typically a task that involves human labor. However, such human participation may take
time and be costly. The optimization of this cost is an active field of research called Active
Learning (AL), that puts humans into the training loop and queries them for the most
informative annotations. The choice of a suitable algorithm for Deep Active Learning (DAL)
is difficult, because it depends on the models and the dataset at hand, which motivates
further research.

Third, annotations may take the form of relative similarity between samples, which adds
another dimension to the learning task, as there are not necessarily clear class boundaries
but rather complex semantics at play. This creates a semantic gap that learning fromhumans
may bridge by imitating the humans’ innate similarity metric. One way to performing such
active metric learning cost-effectively may be Active Learning.

1.1 Objectives of the thesis

This thesis focuses on three consecutive aspects of Information Retrieval with only few
labeled data. First, we enable fast, approximate Information Retrieval on unstructured data
using Deep Metric Learning. Then, we enhance Deep Active Learning by learning a unified
Active Learning policy. And finally, we propose a novel use of AL for Deep Metric Learning
for fast, high-quality similarity search on unstructured data.

Information Retrieval. First, we investigate how we can leverage learned representations
of unstructured data in order to accelerate similarity search, and apply it to scenes of football
play. The IR operation functions as similarity search, which means it searches the nearest
neighbors to a query sample. The representation learned by a DNN would enable retrievals
of similar samples by orders of magnitude faster than alternative approaches [1].

Deep Active Learning. Second, deep models require large amounts of labeled training
data in supervised learning. Creating labeled datasets can be an expensive task. Traditional

3



1 Motivation

Active Learning [2] uses heuristicsor leverages knowledgeof themodel anddatadistribution
to select what labels are most informative. This reduces the costs of labeling data by
querying an oracle only with the most valuable samples for a target model. Deep Active
Learning [3] investigates the issues of AL specific to DNNs, such as the composition of
batches or balancing diverse and uncertain acquisition functions. Learning a unified,
balanced strategy of multiple AL heuristics for batch AL is an objective of this work.

ActiveMetric Learning. Third, many real-world tasks are beyond the semantic gap and
traditional learning methods are not able to predict like human beings, even using state
of the art feature detectors [4]. Generally, this may be tackled by learning humans’ innate
classification or similarity functions directly from from annotations [5]. Note that relative
similarity is richer than classification [6] and can be used to generate an ordinal embedding,
e.g., encoding inter-class similarities and the variances of a class. However, this would
theoretically require many more labels to build a dataset of full pairwise comparisons [4, 5,
6]. Hence, the goal is to annotate aminimal set of annotations necessary, and to estimate the
closest possible approximationwith as low an annotation cost as possible. The development
of an Active Learning method for learning a metric, and conducting a user study on football
trajectory data to evaluate the learned embedding are objectives of this work.

1.2 Contributions

This section summarizes the main contributions of this work with respect to the objectives
of the doctoral project. For the first objective, Information Retrieval, we contribute Deep
Siamese Metric Learning [P1] that learns lower-dimensional representations of unordered,
complex spatiotemporal trajectory data. We address the second objective with our novel
method IALE [P2], that learns a unified AL strategy for DNNs from experts. The third
objective on AL for learning a metric from annotations contributes a DML method and
user study evaluation [P3].

⌅ Trajectory retrieval systems are currently limited by the complexity of the high dimen-
sional data and do not estimate an optimal assignment of multiple, unstructured
trajectories [1, 7, 8]. Due to this, they are slow and do not scale well. In the journal
paper ”Deep Siamese Metric Learning: A Highly Scalable Approach to Searching
Unordered Sets of Trajectories” [P1], published in ACM Transactions on Intelligent
Systems andTechnology (ACMTIST) in the Special Issue on Intelligent Trajectory Data
Analytics, we presented a unified approach for IR. Our method uses a Siamese Net-
work to jointly learn how to estimate the optimal assignment between two ensembles
of trajectories, e.g., two teamsof football players, and also to learna lower-dimensional
embedding of the complex trajectory data, that preserves the distancemetric between
samples of the dataset. It supports dense or sparse inputs and uses ”Gated Temporal
Convolutions” as a masking mechanism for sparse inputs. This combination learns
vector representations of trajectory ensembles, that accelerate similarity search by
orders of magnitude compared to prior approaches.

⌅ In DAL, a recent problem is balancing multiple criteria in one batch acquisition [3].
This can be addressed, for example, by heuristics, that acquire highly informative
samples in a batch [9], or by learning an acquisition function using Reinforcement
Learning (RL) [10, 11, 12, 13, 14]. We propose an alternative that combines existing
heuristics with learning to learn in the journal paper ”IALE: Imitating Active Learner

4



1.2 Contributions

Ensembles” [P2], published in the Journal of Machine Learning Research (JMLR) and
presented1 at the Conference on Neural Information Processing Systems (NeurIPS),
IALE proposes to use imitation learning to learn a policy for AL from an ensemble of
a diverse set of DAL algorithms in the batch-mode pool-based settings. The policy
leverages a learner DNN’s state via ”introspection”, and uses different signals, e.g., gra-
dients or predictive uncertainty, to learn a suitable acquisition function from multiple
heuristics, depending on the state of the AL process. IALE acquires more informative
samples than any baseline in our experiments with well-known image classification
datasets and is transferable between datasets and even classifier architectures.

⌅ In Metric Learning, bridging the semantic gap while simultaneously requiring as few
annotations as possible [4, 6], and learning a predictive model for out-of-sample
data [15] is challenging. We propose a method that adapts InfoTuple [5] and triplet
mining techniques [16] in the journal paper ”Active Learning of Ordinal Embeddings:
A User Study on Football Data” [P3], published2 in the Transactions of Machine
Learning Research (TMLR).Wepropose to use the information gain-based ALmethod
Infotuple [5] and increase its efficiency (wrt. label costand timespent) byconstructing
queries from a sub-set of the pool using an adapted triplet mining technique [16].
This decreases the computational complexity considerably. Furthermore, we conduct
an AL user study to compare different variants of AL (Information Gain, Nearest
Neighbor) and of triplet mining while fine-tuning a DNN for learning notions of
similarity of a complex football dataset [P1]. We show that AL is superior to passive
learning, and that user-specific similarity functions can form relatively consistent
groups.

In addition to the main contributions in the journal publications listed above, I have
contributed to two more publications on adaptive or interactive ML as the first or shared
first author.

⌅ In ”A Sense of Quality for Augmented Reality Assisted Process Guidance” [P4], pre-
sented at the IEEE International Symposium onMixed andAugmented Reality (ISMAR)
as a poster3, we proposed an Augmented Reality (AR) system for process guidance
systems, that uses ML to predict quality metrics. It uses inertial sensors mounted on
work tools and an AR headset to classify work steps and guide workers in an assembly
process. In this work, I implemented the ML algorithm, discussed the literature and
experiments, and wrote the paper.

⌅ In ”Automated Quality Assurance for Hand-held Tools via Embedded Classification
and AutoML” [P5], presented at the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) as a
demonstration4, we propose an end-to-end Automatic Machine Learning (AutoML)
method and a custom hardware platform for the recording of labeled datasets, the
development and the deployment of time series segmentation and classification
models on embedded hardware. In this work, I implemented the DNN algorithms,
performed experiments, and wrote the paper.

1 See the presentation at https://neurips.cc/virtual/2022/poster/56122
2 See the presentation at https://openreview.net/forum?id=oq3tx5kinu
3 See the fast-forward presentation at https://youtu.be/x9jL5V5i5SM
4 See the presentation at https://slideslive.com/38932435
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1 Motivation

Furthermore, I have collaborated with researchers on publications adjacent to my research
and contributed to the following publications

⌅ In ”Recipes for Post-training Quantization of DeepNeural Networks” [P6], presented5

on the EMC2: Workshop on Energy Efficient Machine Learning and Cognitive Com-
puting, we evaluated post-training quantization and showed the benefits of greedily
selecting an optimal global bit-width. In this work, I contributed parts of the eval-
uation pipeline, dataset, DNN model, and textual description, and reviewed the
paper.

⌅ In ”ViPR:Visual-Odometry-aided PoseRegression for6DoFCameraLocalization” [P7],
presented6 at the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) on the Joint Workshop on Long-Term Visual Localization, Visual Odometry
and Geometric and Learning-based SLAM, we presented an approach to fusing an
absolute pose estimation of six degrees of freedomwith an optical flow from a camera,
e.g., using FlowNet [17], to improve a mobile agent’s positioning estimation. In this
work, I co-supervised the prior thesis project and reviewed the paper.

⌅ In ”Localization Limitations of ARCore, ARKit, and Hololens in Dynamic Large-scale
Industry Environments” [P8], presented at the International Conference on Computer
Graphics Theory and Applications (GRAPP), we conducted an evaluation study of the
state-of-the-art AR systems. Our study focused on dynamic, large-scale industrial
environments, that pose different real-world challenges than used for entertainment.
In this work, I contributed as project manager and reviewed the paper.

1.3 Overview of the thesis

The remainder of the thesis is structured as follows. Part II discusses relevant fundamentals
and the state-of-the-art. First, Chapter 2 introduces fundamentals on Information Retrieval
(Sec. 2.1), Active Learning (Sec. 2.3) and Active Metric Learning (Sec. 2.4). Next, Chapter 3
presents the current state-of-the-art relevant to this thesis’s objectives and is structured
analogously to the fundamentals. It presents recentwork on Information Retrieval (Sec. 3.1),
Active Learning (Sec. 3.2) and Active Metric Learning (Sec. 3.3). Part III outlines the
contributed publications that make up the core of this work. Lastly, Part IV discusses the
contributions in Chapter 7 and concludes with an outlook in Chapter 8.

5 See the presentation at https://youtu.be/Gmxh9QgA9Hc?t=14547
6 See the presentation at https://youtu.be/ZCTxPJPCfF0?t=20577
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2 Fundamentals

This chapter introduces the necessary fundamentals on Information Retrieval (Sec. 2.1),
Deep Metric Learning (Sec. 2.2), Active Learning (Sec. 2.3) and Active Metric Learning
(Sec. 2.4) that enable readers to easily follow the state of the art in the Part 3.

2.1 Information Retrieval with Unstructured Trajectories

Information Retrieval from large databases is not only popular in NLP, where it helps for
tasks like the building of knowledge bases and extracting data from documents, but also
finds attention in many other fields such as sports, e.g., for querying similar plays [1], or
transportation, e.g., for querying recurrent convoys of vehicles [18].

Querying for similar samples is coined similarity search [19]. It matches a query sample to
other samples from a database (DB) to retrieve the top-𝑛most similar results. If there are
enough annotations or metadata available for each sample, then the matching algorithm
can take these as a shortcut and perform classical DB look-ups. However, metadata may
be available only sparsely or not at all. In similarity search, data is represented as dense
vectors instead, that are compared pairwise, using an operation defined on the sample
itself, such as the Euclidean distance [1]. However, for some data types, such as multi-
agent tracking in team sports, pairwise comparisons are not well defined because agents’
pairwise assignments follow no clear convention. Thus they require an expensive additional
optimization before similarity can even be computed.

This section first introduces Optimal Transport (OT) as a general approach for the assign-
ment problem in Sec. 2.1.1. Then, Sec. 2.1.2 gives an overview of relevant similarity metrics
for IR. Finally, Sec. 2.2 presents Deep Metric Learning as a way of learning low-dimensional,
distance-preserving representations for similarity search.

2.1.1 Transport Problem

For domains that involve multiple agents, like the tracking of positions in team sports, it
can be impossible to define a stable pairwise distance metric. This is due to the undefined
relationships between the tracked entities. For example, in football, the players’ roles can
change over time as they adapt their strategies to deal with the opposing team [20]. Given
two samples of multi-agent tracking data, it is possible to assign each agent to its optimal
counterpart in the other sample based on a distance metric.

This problem is located within the more general OT problem, which was initially stated
by Monge [21] as finding the least expensive solution for moving dirt from one place to
another. One metric to use for solving such problems is the Earth Movers Distance (EMD)
or Wasserstein metric [22]. In its general form, Monge stated an optimization problem for
finding an optimal mapping 𝑇 from a source distribution 𝜇𝑠 to a target distribution 𝜇𝑡 while
minimizing the cost function 𝑐 ∶ Ω𝑠 ⟶Ω𝑡.

Note that the Wasserstein metric is for general probability distributions, whereas the
transport problem for multi-agent trajectory data is a constrained problem that does not
allow the division of trajectories into point measures. The players’ trajectories, and thus
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2 Fundamentals

(a) Point wise Wasserstein transport. (b) Hungarian solution for summary statistics.

Figure 1: Both plots show positional tracking in football of 20 field players each, for two sets of trajectories (red,
green). Each of the total 40 trajectories consists of 5 samples (about 0.2 s). The Wasserstein transport (a) finds
an optimal point-wise transport but breaks up semantic trajectories. The Hungarian algorithm over summary
statistics (b) instead transports trajectories as semantic units.

their identities, cannot be randomly split up over time. Fig. 1a shows the optimal solution
for two different multi-agent trajectory sets, one in red and the other in green. Here the
OT is a point-wise one-to-one transport. To preserve the semantics of the football domain,
an alternative solution in Fig. 1b finds correspondence between summary statistics of
trajectories instead. Then the Hungarian algorithm [23] can be used as an efficient optimal
solver.

2.1.2 Similarity Functions

Determining the similarity between two vectors can be implemented via distance calcula-
tions. For vectors representing trajectory data, complex distance metrics were proposed,
such temporal-aware similarity or segment-based methods [24]. For application scenarios
with multiple moving objects, e.g., multiple pedestrians, athletes, vehicles, animals or
others, we extend the problem to sets of vectors. For determining similarity of sets of
vectors, an assignment between these two sets has to be calculated first, see Sec. 2.1.1. Next,
a suitable distance metric for pairs of vectors may be applied.

Thiswork is motivated by the problemof similaritymetrics for sets of complex unstructured
data. Without loss of generality, we study multi-agent trajectory data from football. With
respect to the choice of such a suitable distance metric for this team sport, we follow Sha et
al. [1], who have conducted a qualitative analysis of five different distance metrics. They
compare their accuracy for 38 different classes of football play. The Euclidean distance
compares favorably to more complex distance metrics, such as Dynamic Time Warping
(DTW) [25].

The Euclidean distance (𝑙2 distance) between two vectors 𝑝, 𝑞 can be written as a Maha-
lanobis distance [26]

𝑑Mahalanobis(𝑝, 𝑞) = √(𝑝1 − 𝑞2)𝑇𝑀(𝑝1 − 𝑞2) (1)

= √∑
𝑛

𝑖=1
𝑞𝑖 − 𝑝𝑖 (2)
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where the matrix𝑀 is the identity matrix. This distance function may generally suffer from
the curse of dimensionality [27], in that the high dimensionality of data causes distances
to increasingly become uniform [28]. However, by using football trajectory data in this
work, this problem of the Euclidean distance may not be as severe according to Sha et
al. [1]. This may be due to the typical sampling rate of 25Hz of the measurement equipment,
that generates a dimensionality that may not cause large negative effects of this type. Our
work studies these effects deeper [P1]. For other application domains, we refer to Wang
et al. [24]. Still, computing a pairwise distance for larger trajectory DBs is prohibitively
expensive due to the quadratic growth with the number of samples. While only calculating
distances between a query and millions of other elements may still be reasonable, the
necessary transport step (e.g., Hungarian Algorithm or OT) incurs additional costs before
each pairwise comparison [P1].

2.2 DeepMetric Learning

Learning lowerdimensional representations from rawdata accelerates the search immensely.
Siamese Networks [29] can be used to learn semantic similarity in NLP or for face verifica-
tion [30]. Alternatively, a novel metric can be directly learned from human annotations
using a triplet network [31]. These approaches all aim to learn an embedding or target space,
that is of a smaller dimension than the original sample space, but that preserves some
notion of similarity. Ideally, the learned similarity is equal to a human notion of similarity
and semantically meaningful.

distance

Parameters
shared

embedding embeddingdistance

Figure 2: Siamese Networks learn a distance preserving embedding for pairs of samples so that the difference
between distance 𝑑 and the distance �̂� between the samples in the embedding is small.

11



2 Fundamentals

2.2.1 Siamese Network

Fig. 2 visualizes a Siamese Network similar to one that Chopra et al. describe in [30].
This example uses a Convolutional Neural Network (CNN) 𝑓𝜃 to process exemplary data
from a football dataset that consists of images for simplicity. The distance 𝑑 is defined
between two images 𝑝 and 𝑞, and may be the 𝑙2 distance (see Eq. 2). The distance �̂� can be
another distance, and it is calculated between the two embedding vectors. The exemplary
embedding in Fig. 2 is of length 10 and we visualize the encoding of a sample as shades of
color. Siamese Networks 𝑓𝜃 use the loss

ℒ(𝑝, 𝑞) = (||𝑓𝜃(𝑝) − 𝑓𝜃(𝑞)||2 − 𝑑(𝑝, 𝑞))
2. (3)

Training minimizes the difference of Euclidean distance �̂� in the learned embedding 𝑓𝜃 and
the raw data, hence, it learns a distance 𝑑 preserving representation. Due to the use of the
Euclidean distance in the Siamese loss, it is sensitive to noise. Furthermore, large distances
have a large impact on the network’s gradients during training. Due to this, the embedding
captures coarse, large similarity structures better than fine, small neighborhoods, as these
produce only small gradient signals. Hence, this approach is well suited to a first restriction
of the search space [P1].

2.2.2 Triplet Network

Triplets [32, 33] of an anchor 𝑝, a positive sample 𝑝+ and a negative sample 𝑝− constitute an
alternative learning paradigm besides the pairwise comparisons that is used in Siamese
Networks. Annotated triplets represent relative similarity to the anchor sample 𝑝, and thus
are useful for weak supervision that is class-independent and does not require clear labels.
This can be written as the condition that the relative similarity 𝑟𝑖𝑗(𝑝𝑖, 𝑝𝑗) of two samples
𝑝𝑖 and 𝑝𝑗, that a human oracle annotates, fulfills the inequality 𝑟(𝑝, 𝑝+) > 𝑟(𝑝, 𝑝−). From
these, it is possible to learn a similarity function 𝑆 such that 𝑆(𝑝, 𝑝+) > 𝑆(𝑝, 𝑝−).

p p

Figure 3: Triplets consist of an anchor (or query) sample, a positive sample that is similar to the anchor, and
a negative sample that is dissimilar. Learning with triplets minimizes the distance between the anchor and
positive sample 𝑆(𝑝, 𝑝+) and maximizes the distance between the anchor and negative sample 𝑆(𝑝, 𝑝−).

Wang et al. [34] initially proposed training a deep model for learning image similarity
metric 𝑆 from triplets, and Hoffer et al. [31] subsequently show that the triplet network, is
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applicable to a wider variety of domains, challenging the Siamese network. Given a set of
triplets and a deep model 𝑓𝜃 such as a CNN, the triplet loss is defined as follows

ℒ(𝑝, 𝑝+, 𝑝−) = max(||𝑓(𝑝) − 𝑓(𝑝+)||2 − ||𝑓(𝑝) − 𝑓(𝑝−)||2 + 1, 0). (4)

The loss maximizes pairwise distances between the triple’s elements such that the model
learns an embedding in that the distance between the anchor and the positive sample is
minimized, and the distance between the anchor and the negative sample is maximized,
see Fig. 3 for a visualization.

2.3 Active Learning

Active Learning (AL) is a set of ML methods that selects and annotates themost informative
samples for learning [2] and is based on the assumption that there is a subset of samples,
that obtains a similar performance than training on the whole dataset. Furthermore, it
assumes that there is a sample selection method that finds this subset faster than sampling
at random would. The methods choose the training data of models based on heuristics
a-priori and use insights on the learning task or model.

The main motivation for applying AL is to save on the cost and time of generating annota-
tions. Cost may be driven by the complexity of the annotation task itself, and can be further
complicated if annotators require a certain skill such as specialized medical expertise [35].
Time spent annotating typically scales the financial effort invested into the dataset creation
which can be a bottleneck in the progress of ML projects. AL aims to overcome this issue.

At the center of AL are four components [2]. First, a human-in-the-loop, who annotates
data, second, a (large) pool of unlabeled data to select samples from, third, a (smaller) pool
of annotated data, and finally a ML model that learns the task, see Fig. 4. In the AL process,
the annotator (i.e., the domain expert or ”oracle”) creates an initial set of labeled data that
is selected at random. Based on this set, the loop starts and a first model is trained on
the labeled data. Then, given an acquisition function that may use information about the
data and the model, the function selects the next sample(s) from the unlabeled pool. The
acquisition function is at the center of any AL strategy and determines whether the model
can learn faster from selected data compared to random sampling. Finally, the oracle is
queried for annotations and once annotated, the now labeled samples are moved from the
unlabeled pool to the labeled pool, on which the model is trained. This loop continues
until a budget is exhausted, a prediction quality is achieved or any other stopping condition
is triggered [2].

Literature distinguishes pool-based and stream-based AL [2] scenarios. The pool-based
scenario is centered around a database of unlabeled samples and the acquisition function
may select queries from it. The stream-based scenario is instead centered around a (con-
tinuous) stream of unlabeled samples that is fed into the AL loop incrementally. Apart
from these two categories the size of a query further subdivides AL algorithms into different
families. Queries with only one sample may select only the most informative sample, but
are costly w.r.t. model training, because models are trained more often, i.e., after each
acquired sample, instead of only after a larger set of samples. Thus, larger queries (i.e.,
batch-mode AL) are more compute and time efficient as models may fit to faster increasing
dataset sizes, but the batches may introduce sampling bias, e.g., by oversampling one class
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model

unlabeled
pool

labeled
pool

human-in-the-loop

train select

annotate query

Figure 4: The human-in-the-loop Active Learning procedure consists of four components. An ”oracle” that
annotates unlabeled samples, a Machine Learning model that learns a task, the labeled and unlabeled pools of
data, and an acquisition function to select previously unlabeled samples to query the oracle.

that is least-certain [9]. Still, this mode is considered important when using DL, because
retraining is especially costly and an incremented dataset size of only one sample tends to
show unstable performance differences per loop iteration [36].

Acquisition functions are at the center of the AL loop. Because they select the samples to
query the oracle with, the functions is is responsible for the effectiveness of the approach.
An exemplary acquisition function for classification tasks is selecting the unlabeled samples
for which the model’s prediction is the least confident [37]. Here, the predicted likelihood
for an unlabeled sample 𝑥 of a set𝒳 of a model is �̂� = argmax𝑥∈𝒳(1 − 𝑃(�̂�|𝑥)). For each
sample 𝑥 we choose the prediction �̂� = 𝑓𝜃(𝑥) with the highest likelihood. This way the
acquisition function constructs queries with samples the model 𝑓𝜃 is least confident about.

Besides, a long line of research has resulted in a large body of work on different acquisition
functions formanyMLmodels [2]. The concepts of these are primarily based onuncertainty-
sampling [37, 38], querying-by-committee [35, 39], expected error reduction or model
change [36, 40], sample density [41], or reduction of variance, i.e., maximizing information
gain [42]. With the wide adoption of DL the research on this topic has experienced new
attention to adopt the basic principles to deep network architectures. However, many
ideas are similar, hence the following sections explain uncertainty-based AL (see Sec. 2.3.2),
density-based AL (see Sec. 2.3.3) and hybrid approaches (see Sec. 2.3.4). On this basis,
Sec. 3.2 presents the current state-of-the-art of the field.

2.3.1 Deep Active Learning

Large amounts of training data are required for Deep Learning models in order to generalize
well to new, unseendata [3]. This is problematic for training strategies that relyon annotated
data, such as supervised learning. While employing AL to reduce the associated costs of
creating these large corpora of annotated samples, DAL has to take the specifics of DNNs
into account. Traditional AL methods [2] used in conjunction with query sample sizes of
only one are inadequate for use with DNNs [41]. This is due to two main reasons [43], first,
the training of common DL models is costly and increases annotation cost by introducing
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waiting times, potentially by days. Second, increasing the labeled dataset by only one
sample may not even have any significant impact on the model.

This sectionprovidesanoverviewover the fundamentalmethodsof ALwith special attention
to DNNs. Methods for DAL [3] were developed along similar ideas as traditional AL, but we
tailored towards DNNs. These ideas are outlined in the following sections, while Sec. 3.2
reviews the state-of-the-art literature.

2.3.2 Uncertainty Sampling

Uncertainty sampling [37] uses the model’s own doubts about its knowledge to improve it.
Intuitively, samples that the model is unsure about should provide more information about
the dataset than samples that are alreadymodeled with very lowvariance and high precision.
This idea traditionally is feasible for probabilistic models [2]. However, the predictive
uncertainty of DNNs may not be available for any task. Regression models typically predict
one or more continuous variables (e.g., they may predict the yield in chemical processes
from data on temperature and pressure), whereas classification may provide a distribution
over class likelihoods as part of their softmax output [44]. Furthermore, the softmax
uncertainty measure may be insufficiently calibrated [35], i.e., training with softmax can
result in overconfident DNNs [45], which leads to sampling bias in AL[35]. Hence, it is
crucial to obtain a better calibrated uncertainty measure to select the most informative
samples.

We distinguish uncertainty in a reducible and an irreducible part. The irreducible part of
uncertainty is referred to as aleatoric and is the inherently random effect of a process, e..g, a
coin flip has a stochastic component that cannot be reduced further and models will predict
two equally likely outcomes [46]. The reducible uncertainty is also known as the epistemic
uncertainty and is caused by the lack of knowledge [46]. Hence, the aim of AL is to reduce
this epistemic uncertainty and not the inherent aleatoric uncertainty that may be present in
the data itself. For uncertainty-based AL, we aim to efficiently reduce the ”ignorance” [46]
of a model by sampling informative samples.

To address the need for an improved measure of epistemic uncertainty, Gal et al. [38]
proposed amethod toestimateaCNN’suncertaintyvia casting it as a BayesianConvolutional
Neural Network. This allows for the predictive uncertainty to be decomposed into the
aleatoric and epistemic components. Following the discussions of Valdenegro-Toro and
Saromo Mori [47], the mean of the variance of a prediction corresponds to the aleatoric
component and the variance of the mean corresponds to the epistemic component. An
important difference to traditional Bayesian Neural Networks is that Gal et al. proposed
a computationally efficient trick that is based on Monte-Carlo simulation and follows an
ensemble- or vote-agreement scheme [48]. Their scheme randomly drops connections
of the DNN and performs multiple inferences for one sample. The resulting distribution
of the inferences’ result may be interpreted as if it originates from separate models in an
ensemble. Another refinement of uncertainty measures for DNNs was proposed by Beluch
et al. [35], who use the ”power of ensembles” for AL. The authors show that an uncertainty
measure derived from an ensemble is better calibrated compared to using a single model.
While their observation was validated only for few data scenarios, an active learner that
uses an ensemble may also perform better w.r.t. accuracy in more complex data domains
than using a single model softmax for measuring predictive uncertainty.
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Given such reliable measures of uncertainty [35, 38], we can employ different acquisition
functions that select the most appropriate samples for querying. The Max Entropy criterion
isdirectly based on Shannon’s information theory [49] andmaximizes thepredictive entropy
𝐻[𝑦|𝑥, 𝐷train] for an ensemble of 𝑇 elements [35] as

𝐻[𝑦|𝑥, 𝐷train] = −∑
𝑐

(
1
𝑇
∑
𝑡

𝑃(𝑦 = 𝑐|𝑥, 𝜃𝑡)) (5)

log(
1
𝑇
∑
𝑡

𝑃(𝑦 = 𝑐|𝑥, 𝜃𝑡)) (6)

where 𝑐 is the class, 𝑦 is the prediction and 𝜃𝑡 are the weights of the forward pass 𝑡. To
employ this for ensembles [35] or Monte-Carlo simulations [38], we can simply sum the
probabilities 𝑝(⋅|⋅) up and average them over the number of passes 𝑇. Alternatively, the
Variation Ratio acquisition function selects sampleswith themostdispersed probability [38]
(see Eq. 7) or similarly, that have the highest disagreement in the ensemble [35] (see. Eq. 8)

variation-ratio(𝑥) = 1 −𝑚𝑎𝑥𝑦(𝑃(𝑦|𝑥, 𝜃𝑡) (7)

= 1 −
𝑚
𝑇
, (8)

where𝑚 is the number of predictions falling into the class 𝑐 category over the number of
forward passes 𝑇 [35].

2.3.3 Diversity Sampling

Fitting a model to a training dataset that is representative for the whole dataset is a popular
rational in AL. Such a subset may also be more diverse than sampling an equal amount of
least certain samples, and thus not overfit to only a small part of a task, such as the dataset’s
outliers, as may happen when focusing only on these least certain samples. Furthermore,
as DAL is computationally more efficient when trained with batches of data instead of
single samples, the composition of a batch may benefit from an acquisition of more diverse
samples as well, because it avoids biased training. Random sampling can be viewed as
a simple version of a diverse sampling method. However, it may also overfit, e.g., if the
dataset is imbalanced. Sener and Sevarese [41] proposed to select the core-set of a dataset,
that covers the dataset optimally, is unbiased, and works with larger dataset sizes than
uncertainty-based sampling, as it is less affected by outliers and supports less biased, more
representative sample batches.

The approach is based on previous work in optimization, where core-sets were used for,
e.g., k-center clustering [50], or even for AL with Support Vector Machines [51]. The crucial
difference is to build the core-set not in the data domain, but in the learned manifold (i.e.,
the DNN’s embedding) of the pool data [41]. The methods developed in previous work are
then used to solve the k-center task and to construct the query.
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BALD

batch
BALD

Figure 5: The idealized acquisition of BatchBALD [9] selects a more diverse query compared to BALD [42], that
selects the most informative samples, even if they repeat.

2.3.4 Balanced Criteria

Balancing the selection of representative samples on the one hand with the selection of
the most informative ones on the other is especially relevant for DAL due to its benefits
when used in combination with the typical mini-batch training of DNNs. The balanced
construction of batches is the objective of many recent strategies, among others the work
by Kirsch et al. [9] that is based on previous ideas of Houlsby et al. [42].

The seminal work by Houlsby et al. [42] utilizes the mutual information of the DNN’s
parameters and its predictions to determine whether the annotation of a sample would
provide new information to the model. In their method, that is known as Bayesian Active
Learning by Disagreement (BALD), the mutual information of the predicted label 𝑦 and
the parameters 𝜃 is calculated as follows [35]:

𝐼(𝑦; 𝜃|𝑥, 𝐷train) =𝐻(𝑦|𝑥, 𝐷train) (9)
− 𝐸𝑃(𝜃|𝐷train)[𝐻(𝑦|𝑥, 𝜃, 𝐷train)] (10)

Here, the first term measures the entropy over predictions, that is high for uncertain pre-
dictions, and the second term measures the expectation of the prediction, given the model
and its parameters 𝜃, that is low for certain predictions. Next, maximizing 𝐼 helps finding
samples for which the predictions are uncertain, but at the same time, a low uncertainty of
the DNN’s parameters.

BALDselectsonlyonesampleata timeanddoesnotmeasureanyredundancyof information,
if it is used to select additional samples, and as such performs worse with larger batch sizes.
Kirsch et al. [9] argue that it overestimates the joint mutual information of a batch, as it
would count the information of each pair (𝑦, 𝑥) separately even if they are similar and their
information overlaps. Hence, Kirsch et al. extend it such that the maximization optimizes
the whole batch 𝐵 of samples 𝑥1, ..., 𝑥𝑏 and estimates the joint of the samples. Notice that
Eq. 10 and 11 are the same for batch size 1.

𝐼(𝑦1, ..., 𝑦𝑏; 𝜃|𝑥1, ..., 𝑥𝑏, 𝐷train) =𝐻(𝑦|𝑥1∶𝑏, 𝐷train)
− 𝐸𝑝(𝜃|𝐷train)[𝐻(𝑦|𝑥1∶𝑏, 𝜃, 𝐷train)].

(11)
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Here, Kirschetal. elaborate that 𝐼measures themutual informationbetweenasetof samples
ad takes the intersection of the information content of the variables 1, ..., 𝑏 into account,
and optimizes directly for 𝐵’s diversity. Fig. 5 visualizes the key difference between BALD,
that strictly optimizes information sample-wise, e.g., by selecting only themost informative
samples even if they are from the same class and may have overlapping information content,
and BatchBALD, that instead samples more diversely, e.g., fromdifferent classes, and avoids
probably redundant samples. This highlights that the Entropy 𝐻 of a set of samples 𝑥1∶𝑏
lead to less repetition in a batch and more sample efficient batch-mode AL.

2.4 ActiveMetric Learning

This section summarizes the fundamental concepts of Active Metric Learning. First, it
defines the terms and presents the motivation, Sec. 2.4.1. Next, Sec 2.4.2 explains essential
algorithms such as InfoGain and Multidimensional Scaling (MDS). Finally, Sec. 2.4.3
concludes with a summary of good user study design.

2.4.1 Semantic Gap

Active metric learning aims to learn a metric, or a similarity matrix, for all pairs in a
dataset [4]. This is different from classification tasks, where inter-class similarities and
intra-class variance are typically ignored [6].

Employing human annotators to learn similarity in human-in-the-loop systems has one
important reason, that concerns the ”similarity function” [4]: there exists a semantic gap
betweenhumans’ innateunderstandingof similarityand thestateof theart featuredetectors.
For a wide range of topics, humans ”know” similarity whereas implementing similarity
metrics is difficult. For example, Tamuz et al. [4] cite the question of whether a joke is
funny or not as a task that is best learned from human annotators. The New Yorker uses AL
implemented by Tamuz et al. in the NEXT system [52, 53] to rank comics by their humorous
quality1.

Perceptual metric learning has the goal to learn human-perceived inter-object similarity [6],
i.e., a ”continuous” measure or a ”degree” of similarity. Due to the combinatory complexity
of pairwise comparisons, such learning is most often performed using some form of AL to
select only useful queries [4], with more efficient batched queries [6] or with tuples larger
than two [5] (see Sec. 3.3.2).

2.4.2 Essential Algorithms

Multidimensional Scaling (MDS)2 can be understood as a dimensionality reductionmethod
that respects distances in the higher-dimensional space, and that is typically constructed
from a matrix with pairwise distances of the given dataset [54]. Interestingly, it stems from
the field of psychophysics and processing sensory information, and was initially also used
with non-metric similarities [54] (that do not adhere to the triangle equation).

Following Mead [54], we define a dataset with 𝑛 elements, and a triangular matrix (𝑛 × 𝑛)
that contains pairwise dissimilarities (”distances” 𝑑), where row 𝑖 and column 𝑗 contains the
1 Participate here: https://www.newyorker.com/cartoons/vote
2 Implemented as part of scikit-learn: https://scikit-learn.org/stable/modules/manifold.html
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distance 𝑑𝑖,𝑗 between samples 𝑖 and 𝑗. These distances are a metric, if the triangle equation
is satisfied: 𝑑𝑖,𝑘 + 𝑑𝑘,𝑗 ≥ 𝑑𝑖,𝑗. Otherwise, they are of an ordinal, rank ordered, non-metric
nature, that may match dissimilarities (observed by humans) more closely.

Metric MDS minimizes the difference between distance 𝑑𝑖,𝑗 in the higher-dimensional
space and �̂�𝑖,𝑗 in the lower-dimensional space as

𝑛

∑
𝑖=2

𝑖−1

∑
𝑗=1

[𝑑2𝑖.𝑗, −�̂�
2
𝑖,𝑗]. (12)

The metric variant of MDS requires three steps as outlined by Mead [54]: i) obtain pairwise
comparisons, ii) convert relative comparisons into absolute distances, and iii) determine
the required (but lower) dimensionality to represent this. The optimization finds �̂�𝑖,𝑗 that
are similar to 𝑑𝑖,𝑗.

The non-metric variant of MDS deals with dissimilarities that are ranked [55], and for that
the distance between samples is not known or not relevant. The optimization seeks 𝑓(𝑑𝑖,𝑗)
that is similar to 𝑑𝑖,𝑗, but 𝑓(𝑑𝑖,𝑗) preserves only the order between samples 𝑖, 𝑗, 𝑘, 𝑙 as

𝑑𝑖,𝑗 < 𝑑𝑘,𝑙 ⇔ 𝑓(𝑑𝑖,𝑗) ≤ 𝑓(𝑑𝑘,𝑙) (13)
⇔ 𝑑∗𝑖,𝑗 ≤ 𝑑

∗
𝑘,𝑙 (14)

and the distances 𝑓(𝑑𝑖,𝑗) = 𝑑
∗
𝑖,𝑗 are called disparities (i.e., preserve only relative order, not

distance). Approaches such as Kruskal’s non-metric MDS minimize the so-called stress
between pairs of �̂� and 𝑑∗ [55].

In the probabilistic case of theMDS [56, 57, 58], each point is represented by a vector, whose
components are characterized by independent normal distributions. The probabilistic
modeling of the dissimilarity between samples in the embedding can be used to inform
entropy-based AL methods, e.g, Tamuz et al. [4], see Sec. 3.3.2.

The state of the art in active metric learning [4, 5] formulates the information contained in
a query based on fundamental information theory. As described in Sec. 2.3.4, Houlsby et
al. [42] propose the informativenessof a sample in Eq. 10 as the subtractionof theuncertainty
of the oracle to label this sample from the uncertainty of a predicted label for a sample
(given the embedding). Optimizing the result of this subtraction avoids redundant queries
(for that a model is certain) and uncertain responses (when the oracle is uncertain). This
concept was adapted to metric learning [4, 59]. This way, methods can build an annotated
set of highly informative relative comparisons from few annotations. Hence, this section
introduces the basic concepts of information theory.

Both Goodfellow et al. [60] and Cover and Thomas [61] introduce Information Theory as
quantifying the information of a signal, e.g., for finding the limit of data compression or
transmission. Intuitively, an unlikely signal (or sample for Machine Learning), is more
informative than a repeated one. Similarly, independent samples provide additional infor-
mation.

The self-information 𝐼(⋅) of sample 𝑥 for binary systems is measured in bits required to
encode the signal

𝐼(𝑥) = − log2 𝑃(𝑥) (15)
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In Machine Learning, measuring information of probability distribution uses Shannon
Entropy 𝐻(⋅) as

𝐻(𝑥) = 𝔼𝑥∼𝑃[𝐼(𝑥)] (16)
= −𝔼𝑥∼𝑃[log𝑃(𝑥)] (17)

where 𝑃 is the probability mass function. Here, we calculate the number of bits required
to encode the whole distribution 𝑃 over all the samples 𝑋 that we draw from it [60]. This
measures the expected information 𝔼𝑥∼𝑃[𝐼(𝑥)], given the distribution 𝑃 of sample 𝑥. The
encoding 𝐼(𝑥) can be small if the distribution 𝑃 of random variable 𝑋 is only a few values,
but larger if its more uncertain. Then, it has a higher entropy 𝐻(𝑥) and contains more
information. We can write this also as 𝐻(𝑋) = −∑𝑥∈𝑋 𝑃(𝑥) log𝑃(𝑥) [61]. The visualization
in Fig. 6 is inspired by Cover and Thomas [61] and shows the deconstruction of joint entropy
𝐻(𝑌|𝑋) into its components of entropy and mutual information as rectangles.

H(X|Y) H(Y|X)

H(X,Y)
H(X)

H(Y)
I(X;Y)

Figure 6: The joint entropy 𝐻(𝑋, 𝑌) measure two random variables 𝑋 and 𝑌 that describe the total entropy.
Then, 𝐻(𝑋) and 𝐻(𝑌) describe the entropy of each variable. 𝐻(𝑌|𝑋) is the information about 𝑌 that cannot be
explained by 𝑋, and 𝐻(𝑋|𝑌) vice versa. Finally, 𝐼(𝑋; 𝑌) is the mutual information of both 𝑋 and 𝑌.

The conditional entropy 𝐻(𝑌|𝑋) measures how much of the random variable 𝑌 cannot
already be explained by 𝑋 [61]

𝐻(𝑌|𝑋) = ∑
𝑥∈𝑋

𝑃(𝑥)𝐻(𝑌|𝑋 = 𝑥) (18)

For one sample 𝑥, we can write this equation as follows

𝐻(𝑌|𝑋 = 𝑥) = −∑
𝑦
𝑃(𝑦|𝑥) log𝑃(𝑦|𝑥) (19)

The mutual information 𝐼(𝑋; 𝑌) is the ”reduction of uncertainty” [61] that Active Learning
also seeks. AL aims to select those unlabeled samples that are most informative. Methods
estimate the informativeness based on a set of labeled and unlabeled samples from the
same distribution. 𝐼(𝑋; 𝑌) is the information that observing one random variable (from
the unlabeled pool) provides in addition to another random variable (the labeled training
data). Information theory defines this as the information gain, i.e., the mutual information,
between 𝑋 and 𝑌.

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (20)

=∑
𝑥∈𝑋

∑
𝑦∈𝑌

𝑃(𝑥, 𝑦) log
𝑃(𝑥, 𝑦)
𝑃(𝑥)𝑃(𝑦)

(21)

20



2.4 Active Metric Learning

Cover and Thomas [61] explain that 𝐼(𝑋; 𝑌)measures the reduction of uncertainty about 𝑋
that observing 𝑌 brings. Methods in AL often maximize the information that annotating
unlabeled samples from the pool dataset 𝑌 gains for the labeled dataset 𝑋 used in model
training.

The definition of the joint entropy [61] 𝐻(𝑋, 𝑌) of two random variables 𝑋 and 𝑌 follows
from the entropy 𝐻(𝑋) as

𝐻(𝑋, 𝑌) = −∑
𝑥∈𝑋

∑
𝑥∈𝑌

𝑃(𝑥, 𝑦) log𝑃(𝑥, 𝑦). (22)

2.4.3 User Study Design

The recent book by Robert (Munro) Monarch [62] on human-in-the-loop machine learning
isanexhaustive resourceon thedesignprinciplesandpractical considerations forconducting
Active Learning studies with human participants. The considerations that we deem most
relevant to thiswork are on the quality control of annotators, the aggregation of annotations
from different annotators, transfer learning and user interface choices.

2.4.3.1 Intra-/Inter-Annotator Agreement

When a group of human annotators create labeled ground-truth ”golden” datasets, they
can make mistakes. Especially for complex tasks such as speech recognition [62] or trans-
lation [63], performance on the same level or above a single human (expert) annotator
can be achieved by ML methods. For user studies, this means that the collection of data
requires a qualitymetric for annotators, such as the inter- or intra-annotator agreement [62].
Conceptually, inter-annotator agreement requires that a set of queries is repeated for each
participant and an agreement score is derived fromdis-/similar answers. For intra-annotator
agreement the same set of queries is repeated to reach a score of the annotators consistency.
From these measures, its possible to learn, for example, whether the labels are trustworthy,
whether annotators need to be better instructed in the annotation task or even filtered
out [62].

2.4.3.2 Aggregating Annotations

Once a set of annotations is collected from an ensemble of annotators, the labels could
be directly combined into one large training dataset. However, there may be mistakes,
e.g., a disagreement among the labels or annotators may report additional confidences,
that requires additional steps before deciding what label to trust [62], e.g., calculating the
confidence or the entropy of the annotations. In practice, Monarch lists three options if we
cannot decide onto a label based on the agreements the annotators have achieved:

⌅ annotate a problematic sample once more

⌅ assign an expert annotator to label the sample

⌅ exclude the sample

2.4.3.3 Transfer Learning

User studies may utilize transfer learning from one dataset to another task to gain an initial
boost with labeling, or to implement AL strategies [62]. However, in the end pre-trained
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weights may only provide extracted features or learned representations but the learning
task still requires new annotations [62]. Especially recent advances in NLP, with its large
language models [64, 65], and CV to a lesser extend [62], promote the use of pre-trained
models in AL studies. A downsidewith such training is that pre-training on a source dataset
may transfer biases to the novel dataset as well and has to be considered [62].

2.4.3.4 User Interfaces

The three basic design principles for user interfaces for collecting annotations [62] are the
”affordance” of the design (e.g., an object behaves like we expect), the ”feedback” provided
to a user’s action (e.g., click registered in the system), and the perceived ”agency” of the
annotators. Both the affordance and the feedback together make a user interface intuitive,
and agency should give participants a sense of ”power” or ”ownership”, e.g., an AL algorithm
should improve with the number of annotated samples, or the interface lets them submit
all relevant information.

Concretely, the web-based active metric learning platform NEXT [52, 53] provides an
intuitive and minimalist design language for annotating similarity queries. Similarly to our
own design in Fig. 7a, NEXT shows the query’s anchor centered at the top and the choices in
rows at the bottom. We add highlighting of the anchor, as well as a large and obvious radio
button. The number of choices is variable. Finally, our web-based annotation tool provides
direct feedback after an action in the form of an animated spinner (see Fig. 7b). Since AL
methods may run for several seconds, such direct feedback is even more important [62],
since it helps avoid annotator fatiguing for longer.
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(a) Multiple choice interface.

(b) Spinner

Figure 7: a) The user interface is a very simply multiple choice interface with attention to ”affordance” (point-
and-click). b) A spinner animation provides direct feedback after an annotation action.
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3 State of the art

This part consists of three parts. First, Sec. 3.1 presents the recent work on Information
Retrieval with trajectory data, specifically from the sports domain. Next, Sec. 3.2 reviews
the trends and developments in (Deep) Active Learning. Finally, Sec. 3.3 concludes with a
discussion of the state of the art in Active Learning of Similarity Metrics.

3.1 Information Retrieval

This Section presents the different components and research streams, that currently com-
pose Information Retrieval systems in the domain of trajectory data mining, and those
that are highly relevant for its future development. Sec. 3.1.1 shows the state of the art
of frameworks for Sports Scene Retrieval. Next, Sec. 3.1.2 explains metrics that measure
similarity of trajectories. Then, Sec. 3.1.3 presents the recent work on learning similarity for
trajectory data and presents permutation invariant networks. Finally, Sec. 3.1.4 concludes
with the current limitations.

3.1.1 Sports Scene Retrieval Systems

The application of finding similar samples in a large dataset in sports is complex, and several
technically different approaches were proposed to solve it. These Sports Scene Retrieval
systems solve two specific problems with various techniques and varying success: first,
assignments of trajectories between pairs of trajectory sets, and second, a data representa-
tion that is both accurate but also enables dataset queries at interactive speeds. Each of
these sets is a temporal slice of trajectories of fixed length that is called a ”scene”, hence the
name ”Sports Scene Retrieval”.

The following methods represent the state of the art and show how this thesis extends
it. Sports Scene Retrieval systems exist in three variants. The first one constructs data
structures, such as hierarchical clusters based on formation templates to limit the search
space, and may extend them with Machine Learning [1, 7, 8]. The second variant uses deep
representation learning to replace the efficient data structures [66]. The most recent work
uses RL to search similar scenes and combines it with deep metric learning [67].

Sha et al. [1] presented the query paradigm for basketball called Chalkboarding in 2016, and
seeded a series of follow-upworkon Sports Play retrieval [P1, P3, 7, 8, 66, 67]. Chalkboarding
allows users to sketch a query scene and the system then retrieves a similar play from a
database. To do so, it estimates a solution to the assignment problem based on roles and
formation templates (per player, per match, and per team), that it learns from data similarly
to the expectation maximization approach by Bialkowski et al. [20]. The authors solve
the combinatorial complexity using hierarchical and semantic clustering of scenes in the
database based on distances of ball trajectories. Both accelerate retrieval considerably
but introduce an unquantified error. Furthermore, generalizing this approach to other
domains such as soccer is problematic, because the role assignments are not static within
matches or teams. Finally, this thesis evaluates the retrieval speeds and finds that the
computational complexity of large datasets is a limitation [P1]. The authors followed up [7]
with an improved solution to the assignment problem, that uses hierarchical templates, that
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they construct from all data. However, the computational demands determine the hierarchy
depth of the templates instead of semantics. Due to this limitation, for each leaf, they use a
sub-optimal assignment to compute distance on the raw, high-dimensional trajectory data.
Di et al. [8] address this high dimensionality by learning a ranking function from users.
This partially extends the Chalkboarding method, but still relies on the clustering of the
database.

Word2vec

Puppy

Kitten

Cat

Dog

Figure 8: The embedding of words of word2vec [68, 69], or trajectories in the case of play2vec [66], learns
vector representations, that have a low (cosine) distance, if they are conceptually more similar. Here, ”puppy”
is similar to ”dog”, and ”kitten” is similar to ”cat”. Wang et al. apply this embedding conceptually analogously to
segmented trajectories.

Wang et al. [66] follow an alternative approach and propose play2vec. They first segment
games into semantic parts (ball possession) and then treat the segments analogously to
sentences in NLP: they propose to learn relations and similarities similarly to word2vec [68,
69] for languages. Fig. 8 shows an example of embeddedwords, thatWang et al. analogously
applies to trajectories. Mikolov et al. [68, 69] explain, that performing a simple arithmetic
offset operation, for example vector(puppy)−vector(dog)+vector(cat) as in Fig. 8, results
in a vector representation of the equivalent vector(kitten).

Wang et al. [66] observe that trajectories aremade upof repeating segments. Such segments
from the same contexts also appear in similar sports scenes. To create segments, the authors
first map trajectories to a spatial grid of 5𝑥7 elements to avoid assignment issues, see
Fig. 9a for a larger example of our own data, and then segment the trajectories into tokens,
analogously to words in NLP. In a sequence of segments, the contexts before and after a
segment are predictive for it, and thus Skip-Gram with Negative Sampling (SGNS) [68, 69]
can be applied in training. Fig. 9b shows a segment matrix generated from a simple play
segment for our football data.

Learning the play2vec embedding has its benefits, as their user-study shows: its retrieval
quality appears superior to Chalkboarding. However, it also has some limitations. It does
not allow weighing trajectories with different importance during model training, and the
learned embedding preserves only a relative similarity.

The most recent work of Wang et al. [67] builds onto their play2vec method for learning
similarity, and adds intra- and inter-game search components to their framework. For
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(a) A grid overlaid onto the playing field.
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(b) The segment matrix for the playing field.

Figure 9: (a) shows one example trajectory for a scene and a large grid overlaid. (b) shows the accompanying
segment matrix.

intra-game retrieval, they first present two simple algorithms to split the game’s search space
and only compare select samples with a query scene: first, the exact and incremental ExactS,
whichenumeratesall possible scenes, and second, theapproximate SizeS, thatonlyconsiders
scenes with similar length. Their contribution, however, is the use of Reinforcement
Learning to learn a strategy that splits the search space until it finds themost similar sample,
and thus, is most efficient compared to their baselines. For inter-game search, the authors
propose a novel idea for selecting what games to search in. They do not create one global
embedding of all scenes, as our work enables [P1]. Instead, they use deep metric learning
to learn a ranking of games, that are ordered similarly to a query scene, in order to search
only in those similar games. They train a triplet network on randomly sampled triplets (see
Sec. 2.2.2), where the anchor sample is the shortest and the positive sample has the highest
similarity in the play2vec representation. The triplet network then is trained on play2vec
representations with the triplet as a target as in Eq. 4.

3.1.2 Trajectory Similarity Metrics

Similarity metrics are an essential component of Information Retrieval systems. The
similarity between trajectories can be measured using distance functions. Wang et al. [24]
provide a categorization for this type of data: metrics can capture the true ordering of
positions (trajectory-trajectory) or not (point-trajectory) and agree with the differentiation
of Taoetal. [70] on temporal, spatial and spatiotemporal data. In tracking team-based sports,
trajectories can typically be expected to be temporally aligned, and spatially registered in a
fixed semantic frame (playing field). Sha et al. [1] showed in an qualitative study on sports
trajectory data, that the differences between popular distance metrics tend to be negligible,
e.g., Euclidean distance, Dynamic Time Warping, Fréchet distance, or 𝑙∞ distance do not
differ much. However, the current state of the art may improve upon this and is discussed
here.

The three papers [1, 24, 70] discuss and evaluate, among others, the following popular
metrics, that serve as baselines. Discrete Fréchet Distance (DFD) [71] is a curve-based
distance, that takes theordering of points intoaccount. DynamicTimeWarping (DTW) [72]
measures distances by warping the sequences. Longest Common Subsequence (LCSS) [73]
computes an edit distance by matching sub-sequences that are similar. However, these
order-preserving distances are no true metrics, as they do not obey the triangle inequality,
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which can become a limitation. The triangle inequality for three points 𝑥, 𝑦 and 𝑧 requires
that 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). If this fails, then distances do not have to be meaningfully
comparable and transitive, losing these benefits of metric spaces. For example, DTW warps
the sequence to align features, which distorts the original points of trajectory pairs [74],
and thus we cannot use it to construct a metric space and it does not lend itself optimally
for indexing, clustering [70] or to learn an embedding.

Temporal-aware similaritymetrics also respect temporal information but require the sample
rate to be well-calibrated. The benefit of this type of metric, e.g., by Frentzos et al. [75], is to
integrate the time w.r.t. Euclidean distance, and thus handles spatiotemporal information.
This approach is useful for comparing the temporal dimension of trajectories, like in
comparing different modes of transport like buses and cars, and finding temporally aligned
trajectories, e.g., to adapt time tables. In sports scenes, we can align the temporal dimension
and are provided with a well-calibrated sampling rate.

More complex, longer trajectories may be converted into segments, which also reduces
issues with sampling rate calibration [24]. Following this idea, Chen et al. [74] recently
proposed a deep representation learning-based method, that computes embeddings for
trajectories and preserves the similarity between them to accelerate similarity computation.
The authors propose to first divide trajectories into segments and encode these sequences
using a memory-augmented Recurrent Neural Network (RNN) model, that captures the
sequential order information that is relevant for trajectory data [24]. In a second step, the
attention-based learning to rank method learns similarity for the training set, based on the
learned representation in the final state of the RNN model and Euclidean distance.

3.1.3 Metric Learning for Sets

Asdiscussed in Sec. 3.1.1, onekeycomponentof information retrieval systems is the similarity
metric between samples. Finding a low-dimensional representation of high-dimensional
data can accelerate the necessary pairwise comparisons. Here, the goal is to represent
complex data in a meaningful vector space [76] like an embedding. An additional difficulty
forMetric Learning with trajectory data is the permutation invariant nature of a set [P1], i.e.,
unordered sets of trajectories, that may also be found in similar data such as pointsets [76].

3.1.3.1 Permutation Invariant Networks

Zaheer et al. [77] proposed DeepSet initially in 2017 as a deep model, that can process
permutation invariant data. Arsomngern et al. [76] later integrated the DeepSet model into
their Deep Metric Learner to leverage its permutation invariance and thus avoid typical
networks’ issues with order-sensitivity with set data, as explained in Sec. 3.1.3.2. DeepSets
work essentially by processing each set member individually into an individual representa-
tion, ”[adding] up all representations and then [applying] nonlinear transformations” [77],
thus using its commutative property to learn permutation invariant representations.

The authors evaluate DeepSets on various applications, with text context retrieval being
the most relevant that explains the idea well. The explanatory example task is the retrieval
of the most similar words to the given query set (tiger, lion, cheetah). Each of these words
is processed into a representation, and all of these are subsequently added up. Then the
most similar words to the common concept of ”big cats”, that forms a cluster of learned
representations, could be (jaguar, puma). Transferring this idea to trajectory data would
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require a similar additive processing step, that considers pairwise distances for regressing
similarity rather than class labels.

3.1.3.2 Metric Learning with Unordered Sets

This section covers the learning of similarity for samples that are composed of unordered
data or datasets. The methods go beyond traditional supervised deep metric learning
with labeled samples and a pairwise loss and investigate auxiliary losses or self-supervised
learning from triplets [76, 78].

Zhang etal. [78] extend learning trajectory similaritywitha triplet loss, which includes terms
for auxiliary supervision and for optimal matching. They do not learn similarity for sets of
trajectories, but instead focus on longer trajectories, that they split into sub-trajectories.
Hence, their first extension is an auxiliary supervision loss, that learns similarity from
sub-trajectory similarity instead of for temporally aligned trajectories as available in sports
tracking. The distance between sub-trajectories can provide richer information, similar to
what a single player’s trajectory in sports may provide for the similarity between scenes. The
authors encode datawith RNN-based encoder, thatmaps into a similarity space in a residual
network, and then randomly sample sub-trajectories as supervision signals to define the
sub-trajectory loss. The distance for each pair of sub-trajectory 𝐿𝑠𝑖𝑚𝑛𝑒𝑎𝑟 is then added as a
term in the triplet loss (see Sec. 2.2). The second element is learning an optimal matching
of trajectory points from two different trajectories. This matching may be based on a very
complicated distance metric, and learning to estimate this relationship reduces computa-
tional complexity. The authors use an optimal matching between pairs of trajectories as
targets. An Long Short-TermMemory (LSTM) then learns a vector representation. The next
step randomly samples triplets, such that the positive sample optimally matches the anchor,
and the negative sample is mismatched. The learned embedding space then approximates
a matching between trajectories. Their work may serve as an extension to Siamese Metric
Learning, which learns an estimation of optimal assignments [P1], by using auxiliary losses
for finer similarity of player’s trajectories, and also explicitly learns an optimal matching.

Arsomngern et al. [76] propose a self-supervised Deep Metric Learning solution for generic
pointsets in order to leverage unlabeled data, akin to pseudo labeling. To this end, they
transfer ideas from CV or NLP to pointset data. However, the pointsets feature has an order
invariance that is incompatible with typical networks’ order-sensitive input, similar to the
assignment problem in sports tracking. Hence, the authors use DeepSets [77] that are
permutation invariant and combine itwith features extracted by a self-attentionmechanism
from transformers [79]. The learning objective is also based on a triplet loss, but it differs
to [78] in several aspects. Due to the unstructured format of point set data, the authors use
the Earth Movers Distance, that is described in Sec. 2.1.1, to measure similarity between
samples. These distances are then used to construct triplets like Zhang et al. [78]: samples
with lower distances serve as positives and farther away as negative. In sports tracking a
player’s trajectory forms one closed semantic unit, hence EMD for whole sports scenes is
less suitable as it breaks logical constraints. Arsomngern et al. propose another extension
to triplet loss, that specifically considers the similarity of the anchor and negative samples.
These are weighted higher in their proposed weighted self-supervised EMD triplet loss,
as semi-hard negative sampling can enhance learning. For example, Schroff et al. [80]
experimented with selecting hard negatives from a mini-batch and found it to be more
stable and quicker to converge. The learned embedding preserves the more complex
similarity metric as Euclidean distance between points in the embedding
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3.1.4 Limitations of current Information Retrieval methods

Current approaches to information retrieval from datasets of unstructured trajectory are
limited in several aspects. Even though tracking is ubiquitous today, IR is still largely based
on manual annotations by experts. Other approaches may use computationally expensive
data structures that do not scale well, estimate trajectory assignments only for subsets of
the data and limit search space, or do not even support multi-agent trajectory data. Hence,
indexing and IR remains an expensive, slow and imprecise operation. We address these
limitations in the publication [P1] in Appendix A.

3.2 Deep Active Learning

This chapter focuses on the state of the art in Deep Active Learning and highlights methods,
that learn to (actively) learn. First, data distributions can be learned with generative models
and exploited for AL [81, 82, 83, 84], Sec. 3.2.1. Learning AL can be understood as an
optimization problem and solved using Reinforcement Learning [10, 12, 13, 14, 85, 86, 87,
88] or Neural Architecture Search (NAS) [89], see Sec. 3.2.2, by imitating experts [90, 91],
see Sec. 3.2.3, or by selecting the most suitable strategy [92, 93, 94], see Sec. 3.2.4. Meta
Learning aims to solve a related task to Active Learning, namely to enables deep models
to learn quickly with few samples [95, 96, 97, 98, 99, 100, 101, 102], see Sec. 3.2.5. Finally,
Sec. 3.2.6 concludes with a discussion of limitations.

3.2.1 Generative Active Learning

Generative models can learn latent spaces of dataset distributions and synthesize new
samples. AL can then exploit the latent space’s nature to select diverse and representative
samples either for an oracle to annotate or to add informative synthetic samples to the
training dataset.

unlabeled
train

labeled annotate

model Enc. Dec.

Discr.
labeled

unlabeled
query

encode

Figure 10: Generativemethods, such as Variational Adversarial Active Learning, use an encoder-decoder network
to learn the data distribution’s latent space and jointly train a discriminator to distinguish between labeled and
unlabeled samples. This serves as the selection function for active learning.

Mahapatra et al. [82] propose to generate new data samples with high informativeness
to supplement smaller training datasets. They use a conditional Generative Adversarial
Network (cGAN) [103] to learn the data distribution and generate new samples. The
conditioning enables directing the generation process with auxiliary information, e.g., class
labels. Next, a Bayesian neural network (BNN) [104] actively selects generated samples with
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high aleatoric uncertainty (statistical, uncertainty in the data) and epistemic uncertainty
(uncertainty in model parameters). The evaluation of such an augmented training dataset
required considerably fewer annotated samples.

Sinha et al. [81] propose Variational Adversarial Active Learning (VAAL) that learns this
latent space using a Variational Autoencoder (VAE) [105], see Fig. 10. Similarly to train-
ing a Generative Adversarial Network (GAN), VAAL first generates new samples and then
challenges an adversarial discriminator network to differentiate the generated from unla-
beled samples. Their discriminator is a Multilayer Perceptron (MLP) that estimates how
representative a sample is for either the labeled or the unlabeled pool. Both the VAE and
the discriminator are trained jointly, in an adversarial fashion. Then, the authors use the
discriminator’s predictions’ probability to select those samples with low confidence from a
batch.

As is common in Active Learning, follow-up work often develops hybrid approaches of
uncertainty and diversity sampling. The two more recent approaches by Shui et al. [83]
and by Kim et al. [84] explore balancing a hybridization of query strategies built on VAAL.
Wasserstein Adversarial Active Learning [83] balances uncertainty and diversity explicitly.
Uncertainty sampling reduces the empirical risk but can lead to sampling bias, and diverse
sampling may benefit the exploration but become inefficient for smaller batch sizes. Task-
AwareVariational Adversarial Learning (TA-VAAL) [84] extend VAALwith ”task awareness”,
i.e., balancing sampling based on uncertainty with sampling based on the data distribution.
Tasks are encoded into VAAL as the loss information from a ranking conditional adversarial
network. This ranking estimates the errors of the predictions, i.e., the losses. This way,
Kim et al. combine VAAL’s influential sample selection with loss information for selecting
difficult samples.

3.2.2 Reinforcement Learning

Reinforcement learning typically models the AL cycle as sequential decision-making prob-
lem. Alternatively, training a (deep) model to perform selections can be cast slightly
differently, as meta-learning. Two methods [87, 88] combine versions of meta-learning
with the REINFORCE gradient [106] as follows.

model model

labeled unlabeled labeled unlabeled
policy

train uncertainty

label query

reward

uncertainty*train

label query

unlabeled

Figure 11: Reinforced Active Learning inserts a policy into the closed-loop AL system, that selects queries and
receives a reward. A bulk filter, based on a heuristic, e.g., uncertainty-based sample selection, can reduce
complexity (here: uncertainty∗).
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Ravi and Larochelle [88] propose a meta-learning approach to teach an MLP a diverse
and uncertain active learning strategy. They train a prototypical network [107] similarly
to zero-shot learning. They also adapt the training process. The training episodes also
contain batches for 𝑁-class and 𝐾-shot problems with a support set 𝑆support. However,
the difference for active learning is the selection of a subset 𝐴 ⊆ 𝑈 from the unlabeled
pool 𝑈 to construct larger support set 𝑆′support = 𝑆support ∪ 𝐴 with the help of an oracle. To
this end, the authors compute prototypes {𝑐𝑘}𝐾𝑘=1 for all 𝐾 classes and calculate statistics
for each unlabeled sample to any prototype. Then, two MLPs learn quality and diversity
statistics for all of these unlabeled samples, where quality refers to how useful a sample is
to the classifier, and diversity to the dissimilarity of unlabeled samples and already selected
samples in 𝐴 in their feature-vector representation. TheMLPs are trained with REINFORCE
gradient [106] and, together with the prototypical network, can be used as an AL strategy.
Bachman et al. [85] previously proposed a similar method to Ravi and Larochelle [88], that
uses matching networks [108] for meta-learning instead of prototypical networks, together
with reinforcement learning to learn AL (cast as sequential decision making problem).
According to [88], themain differences between bothmeta-learning papers are the different
settings, e.g., batch-mode and few-shot classification.

Learning to teach (L2T) is a student-teacher approach proposed by Fan et al. [87], that
goes even further than Active Learning. While the student model can be any traditional
or deep machine learning method, the teacher model predicts a training set and a loss
function. Active Learning is a special case, coined ”data teaching”. An interesting element
of L2T is the introspection of the teacher into the student. The authors use ”data features”,
i.e., metadata like labels or histograms, but also ”student model features” like training
metrics such as historic training loss. Sample importance is estimated by using the samples’
predicted probabilities, loss values, and margin values, effectively turning the method into
a hybrid of uncertainty- and expected model change strategies.

Several authors consider active learning in a stream-based setting. Woodward and Finn [10]
consider active learning in the online setting. As in a classical RL scenario, an agent, or
policy, is tasked with a sequence of samples and has to decide whether to request an
annotation from an oracle or whether it predicts a label. The authors use an LSTM model
for the policy, and define the rewards 𝑅 for a correct label prediction as 𝑅𝑐𝑜𝑟 = +1, for an
incorrect as 𝑅𝑖𝑛𝑐 = −1 and for requesting annotations from the oracle with 𝑅𝑟𝑒𝑞 = −0.05,
effectively discouraging the policy. Modifying 𝑅𝑖𝑛𝑐 trades off accuracy for label requests.
Fang et al. [11] apply Deep Q-learning to stream-based scenarios, and learn a policy function
𝑄𝜋(𝑠, 𝑎) for policy 𝜋, that determines the utility of action 𝑎 from state 𝑠. State and action are
specifically tailored to the active learning problem in the NLP domain, and their evaluation
shows that the selection policy learns a strategy that is transferable for cross-lingual named
entity recognition. Interesting ideas for the state’s composition are the direct use of the
model’s predictive marginal distributions and its confidence, as the policy 𝜋’s available state
representations. Fang et al. also shape the reward to compensate for the reward delay by
rewarding changes on a held-out performance.

Ren et al. [3] summarize the more recent focus on automated design of deep active learning
either by RL [12, 13] or NAS [89] as saving costs in designing heuristics manually.

Hausmann et al. [12] extend the ideas of Fang et al. [11] to a general model that learns an
acquisition function. The authors train a Bayesian network as a policy network that learns
in a reinforcement feedback loop in every labeling round. They bootstrap the network by
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relying on pre-filtering using existing heuristics. Figure 11 visualizes such an extension of
the classic AL loop. Liu et al. [13] also propose to learn an acquisition function for active
learning, but specifically for the task of person re-identification using a CNN. A policy
selects a sample to query the oracle with. The reward formulation uses an interesting
measure of uncertainty: they use a triplet loss to measure the heteroscedastic uncertainty
of the data (uncertainty in the input data, inherent in the data). The reward for a label
is the difference between the farthest positive and the nearest negative sample in a batch.
Hence, highly rewarded samples are those that are harder to distinguish.

Geifman and El-Yaniv [89] propose to combine active learning with Neural Architecture
Search. Their motivation is that the optimization of model architecture in the active
learning loop addresses the issue of ”hindsight knowledge”, and that model architectures
have to be already known for a problem for active learning to be truly effective. Thus, the
authors propose to alternate the optimization of the architecture and the active learning
step.

In contrast to RL approaches, Konyushkova et al. [86] propose to label samples according
to the expected error reduction and learn a greedy regression model for this task. However,
Casanova et al. [14] then combine their ideas, specifically representing the state space 𝑆
with a smaller, with a RL agent and Q-Learning. The policy is trained for semantic image
segmentation and selects relevant regions in images for the oracle to annotate.

3.2.3 Imitation Learning

IL is closely related to RL, but while an agent actively explores an environment in RL, a
policy learns from imitating experts in IL frameworks, such as DAGGER [90].

Relevant for this review are IL policies, that learn AL from ”experts”. These experts them-
selves can be implementations of AL strategies. Liu et al. [91] propose to teach a policy the
imitation of an ”algorithmic expert”, and use the DAGGER [90] framework. Their expert
essentially randomly sub-samples a small dataset from the unlabeled pool and retrains a
classifier on each sample individually. Then, they derive a sample-wise ”preference score”
based on the measured change of the model’s prediction quality for each retrained network.
This derived target is similar to AL based on expected error reduction. In summary, their
method follows one leader but requires re-training per each sample. This design decision is
computationally expensive, and hence limiting, as well as sub-optimal due to the random
sub-sampling itself.

Liu et al. implement the policy’s state similar to other works by Fang et al. [11] or Fan et
al. [87]. However, instead of the classifier’s predictive marginal distribution and confi-
dence [11], or a hybrid of uncertainty- and expected model change (”data features”, ”student
model features”) [87], they construct the state primarily from dataset representations and
(predicted) labels. It consists of their prediction model’s representations of the sample
under consideration, of the labeled pool, and of the unlabeled pool, as well as the predicted
label of the sample and all labels of the labeled pool. In our publication [P2], we ablate
different state elements to shed some necessary light on this area of research and experiment
with gradient signals as proposed by Ash et al. [36].

A more recent work by Kong et al. [109], called NimbleLearn, also uses Imitation Learning
for batch-mode AL. However, the authors propose to learn a policy network that predicts
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an ”ideal sample” for each batch. The authors train a policy network 𝜋 on a fully labeled
source dataset and apply this to unlabeled datasets in an ”active transfer”, similar to Liu
et al. [91]. Their policy network does not select the sample from the set of all unlabeled
samples but instead predicts a feature vector 𝑃𝑟 of the ideal sample at round 𝑟. 𝜋 uses the
base model’s state 𝑠, which includes samples’ feature vectors of labeled, unlabeled, and
selected samples, as well as more ”general features” like the percentage of each class in the
labeled sample pool, model coefficients and entropy. The sample selection action 𝑎 then
selects the unlabeled sample that is closest to the predicted feature vector as follows

𝑎𝑟 = argmin𝑥∈𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑dist(𝑥, 𝑃𝑟) (23)

where dist is the cosine distance. Kong et al. train their policy in simulation using DAGGER.
The imitation learning loop starts with a random policy, that selects 𝑄 samples per round
and fills a batch, selecting ideal samples, based on their validation score, similar to [91]. The
evaluation of text classification with an LSTM classifier as the base model 𝑓 shows three
types of ”active transfer”. In the direct transfer of 𝑓 in a transfer learning fashion, the cold
transfer applies a pre-trained policy 𝜋 but randomly initializes the parameters 𝜃 of 𝑓, and
the warm transfer transfers both 𝜋 and 𝑓 from simulation to the target dataset. The authors
show that the knowledge transfer of the policy 𝜋 is better than transferring trained base
models 𝑓.

3.2.4 Multi-Armed Bandit

A branch of research casts learning an Active Learner as a Multi-Armed Bandit (MAB)
problem [92, 93, 94].

Initially, Baram et al. [92] considered the task of online active learning with an ensemble
of AL heuristics and propose a combination algorithm (COMB). Using an ensemble of
”experts” instead of following only one leader like [91] may perform more consistently over
the learning cycle than only one heuristic [92]. Here, the choice of which one expert to select
from the ensemble is the MAB problem to solve. The authors propose a semi-supervised
maximum entropy performance measure over the unlabeled pool to score each expert
individually. For classification, this is the hand-crafted Classification EntropyMaximization
criterion. Then, aMAB algorithm has to balance ”exploration” of the potential performance
of any available expert with the ”exploitation” of a well-performing expert, to maximize the
total ”reward” (gain in accuracy) over time. It chooses the highest ranked expert to select
samples to query the oracle with.

Hsu and Lin [93] propose Active Learning by Learning (ALBL), that extend the performance
measure by using an importance-weighted test accuracy, that can estimate the target
performance more directly than CEM. In addition, the authors treat the experts as the
available choices instead of a changing set of available samples like COMB [92]. In a follow-
up paper, Chu and Lin [94] investigate whether the learned strategy or ”experience”, can be
transferred to other datasets. The authors propose Linear Strategy Aggregation (LSA) to
continuously update the learned model with the goal of maximizing AL performance.

Recently, Kim and Yoo [110] tackled active learning in a data imbalanced setting with aMAB.
Their method blends query strategies with a novel minority preferential query in a similarly
adaptiveway as previouswork [92, 93]. Given acquisition functions, e.g., BALD or variations
ratio, their novel minority preferential strategy uses an uncertainty measure conditioned
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on the minority class, adapting the ”strength” of the preference over the whole duration
of the active learning process. The three arms of the bandit are the conventional, the
P-minority, and (P-MIN) the E-minority query strategies (E-MIN). Here, P-MIN sampling
identifies minority classes by sampling the most uncertain instances from the unlabeled
pool, measured by the acquisition function. Analogously, E-MIN identifies the minority
classes in the labeled pool. The probability to select a possible arm is updated through
regret minimization.

3.2.5 Meta Learning

Methods from Meta Learning are ”learning to learn” [111].They often operate in the few-shot
learning setting. Hochreiter et al. [111] initially used a meta-learner LSTM to learn the
optimization of a task-specific learner with very fast convergence compared to Stochastic
Gradient Descent.

As such, some work explores more variants of learning to learn [95, 96, 97]. Chen et al. [96]
use a recurrent network to optimize black-box function, Finn et al. [97] learn an optimal
weight initialization for diverse tasks, and Ravi and Larochelle’s LSTM Meta Learner [95]
goes one step further and uses an LSTM to directly predict the deep network’s weight
updates. Despite their interesting approaches, Jamal et al. [99] found that for hard tasks,
the meta-learners have a tendency to overfit. The meta-learners are also computationally
expensive [98], fail to converge [100] or have a limited temporal horizon [96, 101].

A more direct approach to learning to actively learn was recently proposed by Li et al. [102].
It is based on the sampling strategy of the expected model change. The authors propose
to predict the loss of a target deep model, from its extracted features and combine it with
a ranking loss. Hence, they use a loss prediction module to cast deep active learning as a
ranking problem and name the method learning to rank for active learning.

3.2.6 Limitations of current Deep Active Learning methods

Current approaches to Deep Active Learning, and more specifically IL, are limited in several
aspects. First, the methods lack support for selecting full batches to query the oracle with.
Furthermore, methods may be slow to train due to the unrolling of small subsets of possible
choices to estimate an optimal selection. In addition, the state formulations are weaker and
lack introspection into the task learner model, e.g., a CNN to classify images. From this
follows the lack of adaption to changing sample needs of the task learner model during the
lifetime of the AL learning loop. Finally, once learned policies may not be transferable to
other network architectures or even other or larger datasets. Hence, Deep Active Learning
remains an important field of research. We address these limitations in the publication [P2]
in Appendix B.

3.3 Active Learning of Similarity Metrics

This section focuses on the state of the art in active learning of similarity metrics. Hereby it
focuses on triplet mining [16, 31], Sec. 3.3.1, on Active Metric Learning from triplets [5, 15],
Sec. 3.3.2, using probabilistic models [4, 5, 15, 112, 113], Sec. 3.3.2.1, or constructing query
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batches [6, 114], Sec. 3.3.2.2, and on learning similarity (of sport scenes) in user studies [8],
Sec. 3.3.3. Sec. 3.2.6 finally discusses current limitations.

3.3.1 Triplet Mining

The triplet network (see Sec. 2.2.2) learns an embedding where similar samples are encoded
in more similar vectors, according to a learned metric, and dissimilar samples are mapped
further apart [33].

The methods for selecting an anchor 𝑝, a positive sample 𝑝+ and a negative sample 𝑝− for
training a triplet network is called triplet mining. This is conceptually related to active
learning, since the selection of suitable training data may lead to faster convergence during
training [16]. There are two contexts: offline and online mining. This is similar to the
difference in batch-mode or streaming-mode Active Learning, in that in offline triplet
mining, a method selects 𝑝+ and 𝑝− before batch construction (from a pool of data). In
online tripletmining the triplets are constructed fromasmaller batch, similar toacquisitions
in streaming-mode AL. Furthermore, Xuan et al. [16] distinguish four fundamental mining
concepts, see Fig. 12:

hard negative

easy positive

hard positive

easy negative

Figure 12: Given an anchor sample𝑝, the other samples are defined through adistancemetric and their similarity.
This figure shows the hard and easy negative (class) samples, aswell as the hard and easy positive (class) samples.

⌅ Hard positive mining. These samples have a high distance to the anchor, but are of
the same class (or of high similarity) [16].

⌅ Hard negativemining. Such samples are negative, but they have a low proximity
to positive samples in the embedding. These samples are supposedly beneficial for
the triplet learning task [16], but together with hard positive mining, this may lead to
noisy gradients and bad convergence [115].

⌅ Easy negativemining. In contrast, easy negative samples have a (very) high distance
from positive samples. Due to this, their gradients are not as informative [16].

⌅ Easy positivemining. Similarly, easy positive samples aremore similar to the anchor,
and thus also have a lower distance to it. Still, these samples may help maintain
the intra-class variance and reduce the over-clustering problem [16]. Intuitively, the
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lowest distance similar samples are pulled together, while the farther distant similar
samples are not, maintaining the intra-class variance.

The recent benchmark study by Musgrave et al. [115] furthermore summarizes mixed con-
cepts. A variety of complexity is supposed to further improve learning, such as different
types of negatives (easy, semi hard, hard). The adaptive selection of hard samples in an
online batch is also reported as beneficial, if they are harder than the hardest positive sample.
However, Musgrave et al. critique the possible improvements since the 2006 introduction
of contrastive [116] and triplet [32] losses as artifacts of inconsistent evaluation settings.

3.3.2 ActiveMetric Learning

(Deep) Active Metric Learning aims to learn a model incrementally. It queries an oracle for
annotations such that the training converges quickly, i.e., such that the annotation costs
are reduced [5, 6, 15]. The learned model may then be used for classification, clustering
or ranking. Interestingly, a perceptual metric may instead capture human-perceived sim-
ilarities [5, 6], that can be compared to multi-label learning or hierarchically structured
knowledge [117].

As previously discussed, there exist ”semantic gaps” [118] between human annotations and
classical feature extraction (see Sec. 2.4.1). It follows that, depending on the width of the
semantic gap, the learned metric may either be defined on learned features [6, 114], on
probabilistic models [4, 5, 112, 113] or on a combination [P3, 15].

3.3.2.1 Probabilistic Models

Jamieson and Nowak [112] phrase the problem as fitting non-metric data, such as humans’
innate similarity functions, into a low-dimensional ordinal embedding. Their method
collects annotated tuples of relative comparisons (triplets, see Sec. 2.2.2). They select
only those queries for labeling, for which it holds that previously collected information is
ambiguous for the embedding model, that is MDS).

Tamuz et al. [4] propose to learn similarity of data that is above the semantic gap purely from
a crowd of human annotators. The similarity function between pairs of samples is called the
”kernel”. Hence, their ”Crowd Kernel” method fits the collected annotations to an Euclidean
embedding like MDS. To reduce the required full set of comparisons for triplets of 𝒪(𝑛3)
for 𝑛 samples, they propose an adapted, iterative sampling with complexity𝒪(𝑛 log 𝑙)where
𝑙 is the lower number of compared samples. The idea is that all samples (count of 𝑛) are
only compared to a subset with 𝑙 elements. Tamuz et al. propose to select these queries by
maximizing information gain, relative to the previously learned probability distribution.
For example, they randomly choose an anchor sample 𝑝 and then maximize the information
gain of the choice of the other two samples 𝑏 and 𝑐 of the triplet (𝑝, 𝑏, 𝑐). The information
gain is the difference of the entropy of the posterior distribution𝐻(𝜏)minus the probability
𝑃 of either sample 𝑏 or 𝑐 of a triplet being closer to 𝑎: 𝐻(𝜏) − 𝑃𝐻(𝜏𝑏) − (1 − 𝑃)𝐻(𝜏𝑐). Now,
the algorithm maximizes this for different instances of 𝑏 and 𝑐.

Heim et al. [113] extend these works by incorporating auxiliary information in the form of
feature vectors for each sample. These vectors may be meta-information, like properties of
taste (salty, sweet, etc.) in the Yummly Food Dataset dataset that the authors use to validate
their method. This information is used to reduce the model’s uncertainty.
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Canal et al. [5] build on the previous work on active triplet learning [4, 31, 42, 112, 119] and
generalize tuples to larger rank orderings of more than three samples. This increases the
context that human experts may use to resolve ambiguities and decide on a similarity metric
more easily. The authors then introduce a method to select such larger tuples that is based
on maximizing mutual information and that uses a probabilistic MDS. They also present
simplifying assumptions to render the method tractable, such as statistical independence
of sequential queries, that is commonly assumed in AL [59].

In a recent paper, Nadagouda et al. [15] unify the tasks metric learning and classification in
one common framework. They use queries of arbitrary tuple sizes, but replace the MDS
with a probabilistic DNN. Furthermore, they reformulate the query objective. It does
not query for a complete ranking of a tuple (𝑡1, 𝑡2, .., 𝑡𝑛) of arbitrary size relative to the
anchor sample, but simply queries for the one most similar sample from the 𝑛 available
samples. This is then dubbed the nearest neighbor to the anchor, and the method is hence
named Info-NN. The probabilistic inference on the DNN uses Monte Carlo sampling [120]
to estimate the probability distribution of each sample (see Sec. 2.3.2). This is required for
the computation of the mutual information between query and the DNN’s embedding. The
authors follow Houlsby et al. [42] and define informativeness of new queries as i) a measure
of the uncertain samples given the current embedding, and ii) a measure of the certainty of
the oracles. The first property avoids redundant queries, and the second property avoids
uncertain query responses.

3.3.2.2 Batch Queries

Constructing batches of queries [6, 114] may decrease the training cost and thus increase
efficiency of human annotators. It is a natural extension to querying larger tuple sizes [15,
59]. The recent work [6, 114] is similar to pool-based AL for classification (see Sec. 2.3), in
that it aims to decorrelate [114] informativeness and diversity or to direct select the least
biased subset [6]. Compared to AL methods for classification tasks like BatchBald [9]
(see Sec. 2.3.4), the methods presented in this chapter are applicable to relative similarity
queries such as triplets. Both methods learn an embedding from triplets using a DNN, and
present efficient methods for batch-mode Deep Active Metric Learning.

Kumari et al. [114] approach the selection of whole batches with a two-step approach. Their
aim is to select non-redundant batches triplets, that is similar to online triplet mining (see
Sec. 3.3.1) but within an AL framework. First, they select a sub-set of possible queries with
high entropy. However, they find that such selection has a strong correlation and thus
performs worse than sequentially selecting the same number of queries (i.e., one at a time).
Thus, their second step decorrelates these informative samples to reduce the redundancy
between queries. Similarity to Core-Set [41], the authors propose to estimate a covering set
over the ”overcomplete” set of informative triplets that were sub-sampled from the pool.
They use the greedy farthest-point sampling [121] heuristic to solve the NP-hard covering
set problem. They propose four distance measures that are conditioned on the fitted DNN
model:

⌅ Gradient distance, as proposed by Ash et al. [36] for batch-mode DAL, measures the
expected model change of the DNN represented by normalized gradient vectors per
triplet.

⌅ Euclidean distance measures the average of 𝑙2 distances between possible orderings
of a triplet’s components’ embeddings.
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⌅ Centroidal distance instead averages the triplet’s embeddings but still calculates the
𝑙2 distance between these averaged embeddings of triplets.

⌅ Orientation distance is a centroidal distance extended by the triplet’s orientation
in the embedding space. This idea is similar to defining a clustering distance over
orientation and magnitude of gradient vectors proposed by Ash et al. [36].

The more recent work by K. Priyadarshini et al. [6] postulates that the online selection of
triplets (like in [114]) leads to highly correlated (redundant) selections with low utility, e.g.,
because the ad-hoc heuristics listed above do perform inconsistently and the informative-
ness of samples is only a point estimate. This estimate may be sub-optimal and then lead
to compounded error in subsequent query selections. K. Priyadarshini et al. propose a
principled maximum entropy method that is promising to be less biased. Compared to
the two-step approach of Kumari et al., this information-theoretic method estimates the
whole probability distribution and then selects batches with the maximum joint entropy
over the whole pool. This way, it reduces the redundancy and maximizes informativeness
and diversity. Hereby, diversity is not defined over distance metrics in the embedding, but
instead over the entropy of themodel’s uncertaintymeasures, similarly to BatchBald (Kirsch
et al. [9], see Sec. 2.3.4).

The authors propose several contributions to make their method tractable. First, they use
the Monte-Carlo Dropout method [122] to efficiently estimate the unlabeled triplets’ mean
and covariance. From these, they derive a multivariate Gaussian distribution over the mean
and variance of the triplets. Importantly, this captures the inter-triplet correlation. In a
second step, a greedy heuristic selects those triplets that maximize the informativeness
of a selected batch. It sequentially selects the triplet 𝑡𝑘 at step 𝑘 from the available set of
unlabeled triplets 𝑇𝑈 with maximum conditional entropy given the batch of previously
selected samples 𝐵𝑘−1

𝑡𝑘 = argmax𝑡∈𝑇𝑈\𝐵𝑘−1 𝐻(𝐵𝑘−1 ∪ {𝑡}) − 𝐻(𝐵𝑘−1). (24)

3.3.3 Conducting User Studies

This sectiondescribes the recentworkonuserstudies foractivemachine learning in sports [8,
66, 67] and on experimentation platforms [52, 53] to run AL studies.

Di et al. [8] propose to learn ranking from relative pairwise comparisons of sports scenes,
e.g., soccer, ice hockey, or American football. The goal is to learn user-specific interests and
improve an embedding that uses the Euclidean distance. They use a linear rankSVM with
features extracted from player trajectories by a convolutional autoencoder. However, the
user-specific interests are not collected from users. Instead, the authors use hand-crafted
simulations of seven models of user preferences. Di et al. assume that users are interested
in the types of shots (e.g., three-point shots) or the similarity in the ball trajectory, that
are all computed from position data. Then, they run a simulation to train the rankSVM
for basketball data. Afterwards, they validate the rankSVM with a real user study with 3
participants. The study is designed as a clickthrough experiment, and uses a rank quality
metric for evaluation: participants query the system with one scene, and then view several
pages with responses of similar scenes. They click on similar scenes in the order that
ranks the search results by similarity. In summary, the participants were satisfied with the
responses in 90% of the time, after being asked a binary yes/no question. The ranking
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metrics suggested high quantitative quality as well. An example of a user study as the
means to evaluate the quality of a Sports Scene Retrieval system was presented by Wang et
al. [66, 67]. The authors conduct a user study solely to evaluate their proposed ”play2vec”
system in direct competition with Chalkboarding [1]. In the study seven domain experts
first familiarize themselves with the visualization of the trajectory data in a warm-up phase.
Then the participants are queried with an anchor scene and two retrieved top-1 scene from
Chalkboarding and play2vec, for a total for 10 randomly chosen query scenes per participant.
The participants then respond which of the two samples is more relevant, i.e., similar, to
the anchor scene, without knowing which algorithm retrieved which samples. The relative
comparison between two retrieval systems resulted in more reliable estimate of relative
retrieval quality than the smaller study by Di et al.

(a) Anchor.

(b) Option 1. (c) Option 2.

Figure 13: (a) shows the anchor of a query, and (b) and (c) the options to select. Participants visit a website that
shows these or similar images, and asks them to select the most similar option with respect to the anchor.

Jamieson et al. [52] and Sievert et al. [53] present the experimentation platform ”NEXT”
for conducting real-world AL user studies. It is designed for real-world, scalable and also
reproducibleexperiments inmind, and can beaccessed online by simplyusing awebbrowser.
Participants open a prepared query website, and interact with it to submit their response to
the system. For example, see Fig. 13 for the accompanying task for annotating triplets. Then,
the NEXT platform can run AL algorithms, update models, or log information. The authors
stress that real experiments have additional properties that influence the performance of
AL algorithms that are impossible to model in a simulation, because they are complex and
unforeseeable. The algorithm and network response times are cumulative and can cause
fatigue in human participants. Furthermore, annotators may annotate with different levels
of quality, or respond in a non i.i.d. manner (see Sec. 2.4.3). For example, humans notice
delays of about 400ms or longer. After subtracting the network delays, an AL method has
to run in about 50 to 100ms. The authors then describe that this can be challenging for
contextual bandits that are computed in real time. Furthermore, there is a trade-off between
updating the model and running AL methods for longer. Updating models with collected
annotations more frequently avoids collecting ”stale” responses that do not contain novel
information. However, increasing run time of AL methods can lead to more informative
queries. Both options use the same budget of computational time resources.
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3.3 Active Learning of Similarity Metrics

3.3.4 Limitations of current Active Similarity Learning methods

Current IR systems for unstructured data and studies on the active learning of ordinal
embeddings are limited in several aspects. First, sports scene retrieval systems still rely
on the Euclidean distance. This distances captures global ordinal structure better than
local one due to the effects of the high dimensionality [P1, 28], despite the findings in
previous smaller-scale studies [1]. Still, no exhaustive studies exist that aim to efficiently
learn similarity metrics for trajectory data from human annotators. Second, modern active
learners for ordinal embeddings only randomly sub-sample the pool of available samples to
construct queries in order to achieve run-time, that are sensible for studies with human
participants. Furthermore, they employ very simple embedding methods that do not
generalize to new samples. In addition, only few studies on AL consider the effects of
sample composition on query complexity for humans. This complexity factor may result in
skipped responses and fatigue, which leads to more error prone labeling. Some authors
even call for a deeper study of the influence of queries in terms of similar psychometric
properties. Lastly, current experimentation frameworks for AL user studies lack support
for modern DL and thus limit the field from advancing in this promising direction. We
address these limitations in the publication [P3] in Appendix C.
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4 Deep SiameseMetric Learning: A Highly Scalable
Approach to Searching Unordered Sets of
Trajectories

Löffler, Christoffer and Reeb, L., Dzibela, D., Marzilger, R., Witt, N., Eskofier, B.,
Mutschler, C.: Deep SiameseMetric Learning: AHighly ScalableApproach to Search-
ing Unordered Sets of Trajectories. In: ACM Transactions on Intelligent Systems
and Technology, Volume 13, Issue 1, Article N.: 6, pp 1-23, (2022). See Appendix C for
the full paper.

Abstract This work proposes metric learning for fast similarity-based scene retrieval of
unstructured ensembles of trajectory data from large databases. We present a novel repre-
sentation learning approach using Siamese Metric Learning that approximates a distance
preserving low-dimensional representation and that learns to estimate reasonable solutions
to the assignment problem. To this end, we employ a Temporal Convolutional Network
architecture that we extend with a gating mechanism to enable learning from sparse data,
leading to solutions to the assignment problem exhibiting varying degrees of sparsity. Our
experimental results on professional soccer tracking data provide insights on learned fea-
tures and embeddings, as well as on generalization, sensitivity, and network architectural
considerations. Our low approximation errors for learned representations and the interac-
tive performance with retrieval times several magnitudes smaller show that we outperform
the previous state of the art.

Author contributions C.L. wrote and edited the paper, reviewed related work, and inter-
preted and discussed the results. C.L. and L.R. conceptualized themethodology, wrote code
and performed experiments. C.L. supervised the research project. N.W., D.D., R.M. and
C.M. contributed with ideas and discussions. C.L. designed the experiments and ablation
studies. L.R., D.D., R.M., N.W., B.E. and C.M. reviewed and edited the paper. N.W., B.E.
and C.M. supervised the work.
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5 IALE: Imitating Active Learner Ensembles

Löffler, C., andMutschler, C.: IALE: Imitating Active Learner Ensembles. In: Journal
of Machine Learning Research, Volume 23, pp. 1-29 (2022). See Appendix B for the full
paper.

Abstract Active learning prioritizes the labeling of the most informative data samples.
However, the performance of active learning heuristics depends on both the structure of
the underlying model architecture and the data. We propose IALE1, an imitation learning
scheme that imitates the selection of the best-performing expert heuristic at each stage of
the learning cycle inabatch-modepool-based setting. WeuseDAGGER to traina transferable
policy on a dataset and later apply it to different datasets and deep classifier architectures.
The policy reflects on the best choices from multiple expert heuristics given the current
state of the active learning process and learns to select samples in a complementary way
that unifies the expert strategies. Our experiments on well-known image datasets show
that we outperform state-of-the-art imitation learners and heuristics.

Author contributions C.L. conceptualized the methodology and reviewed the literature,
implemented the algorithms and experiments, and discussed the results. C.L. wrote the
initial draft of the paper and C.L. and C.M. reviewed and edited the paper. C.M. contributed
with ideas and discussions, and supervised the work.

1 IALE is pronounced /eIl/.
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6 Active Learning of Ordinal Embeddings: A User
Study on Football Data

Löffler, C., Fallah, K., Fenu, S., Zanca, D., Eskofier, B., Rozell, C., Mutschler, C.: Active
Learning of Ordinal Embeddings: A User Study on Football Data. In: Transactions
onMachine Learning Research, pp. 1-26 (2022). See Appendix C for the full paper.

Abstract Humans innately measure distance between instances in an unlabeled dataset
using anunknown similarity function. Distancemetrics canonly serve as proxy for similarity
in information retrieval of similar instances. Learning a good similarity function from
human annotations improves the quality of retrievals. This work uses deep metric learning
to learn these user-defined similarity functions from few annotations for a large football
trajectory dataset. We adapt an entropy-based active learning method with recent work
from triplet mining to collect easy-to-answer but still informative annotations from human
participants and use them to train a deep convolutional network that generalizes to unseen
samples. Our user study shows that our approach improves the quality of the information
retrieval compared to a previous deep metric learning approach that relies on a Siamese
network. Specifically, we shed light on the strengths and weaknesses of passive sampling
heuristics and active learners alike by analyzing the participants’ response efficacy. To
this end, we collect accuracy, algorithmic time complexity, the participants’ fatigue and
time-to-response, qualitative self-assessment and statements, aswell as the effects of mixed-
expertise annotators and their consistency on model performance and transfer-learning.

AuthorcontributionsC.L. implemented algorithms, designed and conducted experiments,
wrote and revised the manuscript. K.F. and S.F. contributed to the theoretical framework
and experimental design, offering insights. K.F. and D.Z. provided manuscript feedback.
C.R. guided the research, including experimental and algorithmic design. C.M. supervised
and helped refine the experiments and methodology, and provided manuscript feedback.
B.E. supervised the project and provided manuscript feedback.
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7 Discussion

This Chapter discusses the future perspectives that are relevant to the objectives of this
thesis. Sec. 7.1 discusses research avenues for working with sports scene search and other
trajectory data, and Sec. 7.2 addresses the same for Active Learning.

7.1 Sports Scene Search

We proposed to learn a lower-dimensional embedding of sports scenes [P1]. This represen-
tation preserves a target metric and estimates the assignment problem of the unstructured
trajectory ensemble.

Learning a vector representation, such as Word2Vec [68, 69] in NLP, is an important
component of many ML approaches, and also for applications such as IR [123]. It should
become a crucial part of sports scene retrieval systems like Chalkboarding [1] as well. A
lower-dimensional representation of complex data is important, because it simplifies the
problem by mitigating the curse of dimensionality [27, 28]. The vector representation
effectively acts as a learned dimensionality reduction algorithm. Hence, the goal of learning
a lower-dimensional representation is to preserve distances in the learned embedding. A
sub-goal is to estimate the optimal assignment of ensembles of trajectories as part of the
learned embedding function because the exact calculation is computationally infeasible
with 𝒪(𝑛3) for large datasets using the Hungarian algorithm [23].

7.1.1 Addressed Literature Gaps in DeepMetric Learning

We presented a solution for jointly learning a distance preserving embedding and esti-
mation of the optimal assignment problem [P1]. Prior work processed trajectory data in
Play2Vec [66, 67], but did not handle ensembles of unstructured data that is common for
team sports trajectories, or built data structures for retrieval [1, 7, 20] instead of reducing
dimensionality. Wecontributed aDNN-basedmethod that jointly estimates the assignment
and learns a distance preserving embedding of complex trajectory ensembles. Our Siamese
network handles sparse inputs using ”Gated Temporal Convolutions”. The benefits of our
learned vector representation of the highly complex data are manifold. First, we break the
curse of dimensionality effectively. The learned embedding reduces the dimensionality
for samples of 5 s from 5.750 to between 64 − 1024, depending on the required fidelity.
Furthermore, we proposed to estimate the assignment problem via different templates, and
further reduce computational complexity at inference. All these contributions lead to an
accelerated similarity search, that is faster by orders of magnitude compared to the state of
the art [1].

7.1.2 Metric Learning Perspectives

This section discusses the possible perspectives of the contribution [P1].

Trajectory Data Applications. Using our proposed Deep Siamese Metric Learning at
their core, other sports scene search applications [1, 7, 20] can benefit from the lower
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dimensional representation and estimation of the assignment problem. Other research
groupsmay focus on adjacent team sports, like basketball or ice hockey, that feature a similar
property of unordered trajectories. Furthermore, other applications with trajectory data,
such as in commerce (tracking of customer movements [124, 125]), medicine (walking gait
analysis from trajectory data1) or industry (Radio Frequency (RF) positioning that searches
for similar channel-frequency or sender-receiver assignments), could benefit from smaller
representations.

RecommendationSystems. Our learned embedding lends itself to further refinement by
using recommendation systems from the field of Information Filtering (IF) [126] or by active
embedding search [59]. IF is a specialized sub-field of IR, that Belkin et al. [126] considers
as being ”two sides of the same coin”. If a search engine would be an IR system, then a
recommender systemwould be an IF system. On one hand, personalized recommendations
and rankings can be learned from users by systems such as Di et al. [8]. On the other hand,
active embedding search [59] searches for a preferred point within a Euclidean space, and
would directly benefit from a lower-dimensional distance preserving embedding with an
estimated solution to the assignment problem.

Complex Similarity Metrics. A natural extension of our metric learner is the use of
other, more complex similarity metrics than the Euclidean distance, that handle spatiotem-
poral information (see Sec. 3.1.2). Future research may conduct larger studies with more
participants, other (team) sports or longer scenes than Sha et al. [1], and experiment with
other metrics, such as OT (see Sec. 1), and find alternative distance metrics to the Euclidean
distance. The use of any distance metric is possible because our Siamese network approach
is independent of their choice. The distance between input samples can even be different
from the learned embedding distance. The benefit of using our method is greater, the more
complex the distance metric is, that our method approximates. Querying users can serve as
the base to learn Mahalanobis metrics [127, 128, 129], users’ preferences [130], or to jointly
learn both a metric and preferences [131].

7.1.3 Limitations of the ContributedWork

Our proposed Deep Siamese Metric Learning approach has several limitations, that we
partially address in later work [P3]. Recall that we estimate the pairwise distance and the
assignment of two sets of trajectories. This leads to two problems.

First, the Euclidean distance that we use to estimate distances is susceptible to noise if used
with high-dimensional data such as trajectory data. While this does not overly impact the
global structure of the learned embedding, the effect is noticeable in the smaller structures.
We see this in the evaluation of the rank correlation of the top-100 nearest neighbors [P1].
It shows that the ranking of the original data and the learned embedding diverge slightly.
However, this issue can be easily solved by introducing a two-step system, that computes an
optimal assignment and distance on the reduced (e.g., top-100) nearest neighbors directly.

Second, we use templates to assign trajectories to channels in order to estimate a solution
to the assignment problem. We show that these templates may vary in quality as part of

1 See for example project https://www.mad.tf.fau.de/research/projects/
personalization-of-muscoskeletal-models/
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7.2 Deep Active Learning

our evaluation [P1]. Future work may propose enhanced templates similar to the adaptive
elliptical assignment that we propose in a later work [P3].

Apart from algorithmic limitations, a final limitation is that we process only football data.
Hence, future work may apply ourmethod to other applications in sports, such as American
football, basketball or baseball, or even transfer the methodology to other domains.

Our overriding idea for Deep Siamese Metric Learning is to jointly estimate the distance
and assignment of high-dimensional trajectory data. The learned embedding not only
enables new use-cases in the sports domain, such as interactive similarity search, but may
also spark future work, e.g., into active search or IF [59, 126].

7.2 Deep Active Learning

To reduce the costs of annotating unlabeled sets of data, it is essential to focus on the parts
of the data pool that create the most value, i.e., that are the most informative samples for
a machine learning model. Asking annotators to label batches at a time is not only more
efficient for the participant [2] because the slow fitting of models can use more data at once,
and annotating can be done in parallel. The predominant training paradigm Stochastic
Gradient Descent (SGD) for DNNs uses (mini) batches [60]. Furthermore, training DNNs
is an expensive optimization. It is more efficient to re-train on more than one sample at
a time to reduce the annotators’ waiting time between queries. Hence, one objective of
DAL is to construct queries of more than one sample for the annotating oracles [3]. Good
batches are more beneficial for learning and reduce the required amount of labeled samples.
This typically requires acquisition functions that combine diverse and uncertain criteria [3,
9]. Limitations of otherwork are to set a good balance between different criteria over the AL
cycle as proposed by [91, 93, 110]. For example, Batch Active learning by Diverse Gradient
Embeddings (BADGE) [36] acquires diverse samples based on the directions of gradient
signals, but requires relatively large acquisition sizes to beat mono criteria AL [P2].

7.2.1 Addressed Literature Gaps in DeepMetric Learning

We presented the method IALE [P2] that learns an acquisition function (policy 𝜋) that is
suitable for DAL. During policy training, 𝜋 imitates the best acquisition function from a set
of functions, given the internal state of a task model 𝑓 and a policy training dataset. We
address the limitations of prior work in multiple aspects. First, we construct batches of
variable sizes. Second, we unify different acquisition functions of an arbitrary kind. And
third, we use the task model’s state to generate queries. This allows the policy to adapt the
acquisition function to the model’s state during the AL cycle, as our evaluation shows.

7.2.2 Deep Active Learning Perspectives

This section discusses the possible perspectives of the contribution [P2].

Applying IALE. Otherwork, that can directly benefit from IALE, may apply it in domains
typically addressed by DAL. As surveyed by Ren et al. [3], some examples from computer
vision are tumor classification in medicine, plankton classification or counting of cells,
and other examples from NLP are listed as Named Entity Recognition (NER) or sentiment
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classification, among others. Any application that requires annotations but is also cost-
sensitive, may generally benefit from AL, and specifically from IALE.

Extending Imitation Learning. Our work on IALE is in line with prior work by Liu
et al. [91] and parallel research by Kong et al. [109], that both use IL to learn acquisition
functions. Future research may incorporate aspects of IALE, such as the formulation of its
state, or the learning objective proposed by Kong et al. [109].

7.2.3 Limitations of the ContributedWork

Future work may address current limitations, such as the sub-sampling used in both meth-
ods, that may be handled with adjacent ideas like Learning to Rank [102]. This may further
increase the methods’ performance by considering the full pool distribution. Extending the
methods and their evaluation to other problems such as annotating imbalanced datasets, or
to consider noisy oracles, are other interesting research avenues, as are larger experiments
with more experts.

Lastly, IALE’s ability to transfer the trained policy𝜋 betweendifferent classifier architectures
and datasets is an intriguing property, that necessitates further research. The conceptual
connection to the ”learning to learn” [111] paradigm, like Ravi and Larochelle’s LSTM Meta
Learner [95], that predicts a target network’s parameters, outlines an interesting parallel to
IALE’s learned acquisition function, that predicts the most informative samples for a target
network.

7.3 ActiveMetric Learning

Learning humans’ innate similarity function estimates a metric from as few annotated
samples (e.g., triplets) as necessary. This is important because it can help bridge the
semantic gap, which may open up new use-cases to prediction models that use learned
features based on ”human kernels” as Tamuz et al. put it figuratively [4, 6]. The primary goal
of Active Metric Learning is to find a lower-dimensional embedding of high-dimensional
data, that encodes a distance metric between samples which is of interest to humans [4, 5] 2.
This representation may be learned from human annotations, where the ”active” learning
component aims to reduce the cost associated with labeling data. Using DNNs similarly as
us or, e.g., Nadagouda et al. [15], focuses on learning features from high-dimensional data.
Problems are manifold, and are founded in both Active Learning and Metric Learning alike.
The challenges of AL are the selection of suitable queries to participants that reduce the
annotation costs [4, 5, 6, 15, 112, 113, 114]. A major limitation is the efficiency of querying
annotators. This is a central objective of research, e.g., it may be increased with larger
query- or batch sizes [6, 59, 114]. Another limitation is the embedding function, that may be
learned only for a closed set due to the common use of MDS. Here, recent work addresses
this by instead training an Artificial Neural Network (ANN) as model [15].

2 See also the relevant mission statement at https://siplab.gatech.edu/
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7.3.1 Addressed Literature Gaps in DeepMetric Learning

In our publication Active Learning of ordinal embeddings [P3], we propose to adapt an
entropy-based AL method [5] with a triplet mining heuristic [16]. First, the mining effec-
tively sub-samples the pool to reduce the computational complexity of the query selection
step while simultaneously providing primarily useful samples to select from. Second, the
reduced pool leads to less skipped responses by human annotators, and leads to less fatigue
and lower likelihood of errors due to reduced concentration. And third, the method guides
the training of a DNN that generalizes to new samples. We perform a user study to validate
the method both qualitatively and quantitatively. It sheds light on the strengths and weak-
nesses of our method when applied in a real-world experiment with human participants.

7.3.2 ActiveMetric Learning Perspectives

This section discusses the possible perspectives of the contribution [P3].

Other work that addresses learning semantic similarity from few annotations given high-
dimensional input data can benefit from our method. Typical data domains are images
or complex time series like positions, and the issues to solve are cost-related (time cost,
fatiguing). Example applications may be learning the semantic similarity between images
in photo databases [132] or medical image processing [133] that usually requires expert
annotations.

Our work learns a metric for sports scenes, hence similar systems for other sports, such as
ice hockey [8], American football [8, 66, 67] or basketball [1], may benefit from fine-tuning
their similarity metric from annotations.

7.3.3 Limitations of the ContributedWork

Ourwork builds on priorwork [5, 16]. Future research may incorporate ideas from ourwork,
such as the adaptive sub-sampling of the pool, the training of a generalizing prediction
model, or the optimization of user studies towards reduced fatiguing (skipped queries)
besides pure improvement of quantitative metrics like accuracy. It may further address
current limitations.

First, modern DAL relies on batched queries to an oracle, and recent publications [6,
114] propose suitable acquisition functions that select uncertain but also diverse queries.
However, the benefit of a larger training batches of more than only one sample is mainly
efficiency. This can be constructed from larger tuples from which we generate many pairs
or triplets to train with.

Second, it may be beneficial to directly use a probabilistic DNN [15] instead of MDS or
t-Stochastic Triplet Embedding (tSTE) by incorporating the Monte-Carlo method by Gal et
al. [38].

Third, our proposed triplet mining approach may be further improved and should be
diligently analyzed. Thework byMusgrave et al. [115] showsminimal differences fordifferent
loss functions, and a critical follow-up study on triplet mining could lead to similar insights.
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Finally, performing larger user studies using thousands of annotators, e.g., by employing
Amazon Mechanical Turk3 like Canal et al. [5], on additional datasets may empirically show
the benefits (or uncover weaknesses) of our proposed method.

Our overriding idea for Deep Active Metric Learning is to combine the predictive power of
Deep Neural Networks for unobserved samples with entropy-based Active Learning to learn
similarity from few annotations. This may find application as a Deep Metric Learning [133]
method to bridge semantic gaps [4].

3 https://www.mturk.com
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8 Conclusion and Outlook

8.1 Findings and Contributions

The findings and contributions of this dissertation can be summarized as follows:

⌅ In [P1], we presented an approach based on a Deep Siamese Network that learns
to jointly estimate an optimal assignment between two unstructured ensembles of
trajectories of a football dataset, and to preserve their distance metric while learning
a lower dimensional embedding. The learned vector representation vastly accelerates
similarity search compared to prior approaches [1].

⌅ In [P2], we presented an Active Learning strategy, that uses Imitation Learning to
learn a unified AL policy (i.e., an acquisition function) from a diverse set of baseline
heuristics. It proposes an expressive state definition that includes, e.g., gradient
signals and describes predictive uncertainty, and supports batch-mode pool-based
AL. We experimentally show that our policy acquires more informative samples than
any baseline, and that it is transferable between datasets and classifier architectures.

⌅ In [P3], we presented a method to increase the computational efficiency of the
information gain-based Infotuple via triplet mining, that leads to reduced labeling
cost and time spent annotating data. We propose to use the embedding space of an
ANN for triplet mining, and thus optimize the query acquisition. We conduct an AL
user study on a football trajectory dataset to demonstrate the effectiveness of our
method compared to both active and passive baselines.

In summary, this thesis presents methods to learn small but accurate representations of
football trajectory data, to improve Active Learning forDeep Learning models, and finally to
efficiently use AL for learning similarity metrics to fine-tune and personalize the trajectory
representations.

Compared to previous methods, the learned representations of the trajectory data do not
require additional side information in training, such as roles or other meta information.
Instead we only employ a simple distance metric like the Euclidean distance [P1]. Similarly,
while the learned embedding is small, it retains sufficient information without the need
for additional structure to reduce the search space, such as hierarchical tree structures
or clustering that prior work relied upon. Moreover, we propose to directly fine-tune the
embedding using Active Learning to learn the experts’ innate similarity function in an
interactive user study [P3]. This way we can retain all achieved benefits of [P1] while
personalizing the underlying similarity metric. Still, our contribution may be integrated
with side information to strengthen such systems. Recent work [134] from the field of
Few-shot classification discusses our work in that new context, and proposes a type of class
hierarchy to enhance transfer learning.

Towards the enhancement of AL, we propose to learn an acquisition function from demon-
stration, forgoing the need for hand-crafted heuristics. Instead our policy learns directly
from data and the Deep Learning model’s state [P2]. Our method may be directly used in
applications, or be integrated into algorithm selection frameworks, such as TAILOR [135],
who propose to integrate ”Learning Active Learning” methods like ours and transfer them
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to unseen datasets. In addition, our method’s introspection component may be used in
other approaches easily.

In addition to this work’s main contributions, the works on augmenting human labor with
ML [P4, P5] have sparked discussion. Our ideas motivated further research into related
applications for Human Activity Recognition [136] or quality assurance [137], and served as
examples for ML applications on the edge [138].

8.2 Outlook

Employing Deep Learning effectively for Information Retrieval, teaching DL models cost-
efficiently using Active Learning and learning similarity directly from humans to bridge
semantic gaps will continue to pose challenges to practitioners of ML. In this context, we
have proposed novel methods or frameworks for trajectory-based Information Retrieval,
Deep Active Learning, and Deep Active Metric Learning, that addressed and solved previ-
ously open problems. Still, many problems remain open, and many applications still search
for their methodology.

Regarding the future of Artificial Intelligence in sports, Tuyls et al. [139] provide a broad dis-
cussion. Concerning trajectory data, the authors see open research in the recommendation
of generated trajectories using prediction models that may have far reaching consequences.
It may serve to propose novel solutions for constrained set pieces, help find short-term plays
(with subsets of players) or even discover new long-term strategies for entire teams. Our
work [P1, P3] may efficiently measure the similarity of generated solutions and thus serve as
a selection function. In addition, may incorporate expert knowledge into similarity metrics
to guide the selection and find better proposals in less time.

In the visionary publication on Deep Active Learning by Ren et al. [3], the authors list many
open issues and research questions. Our work [P2] is compatible with many of their ideas
and may serve as a basis. First, the authors call formore reliable and comparable benchmark
studies, that unify currently inconsistent evaluations of methods, baselines, and strategies.
By publishing a code supplement for [P2], and by replicating previous evaluations, we follow
this spirit and enable future work to easily evaluate IALE. A concrete proposal to extend our
work [P2] is a generalized training on generated datasets, similarly to the idea proposed
by Ren et al. This would rely on our method’s ability to be transferred between datasets.
Furthermore, a hybrid strategy that combines IALE with semi- or unsupervised methods
is feasible, e.g., through a label propagation component that relies on the ANN. Finally,
the literature [3, 135] increasingly focuses on more task-independent AL, e.g., through
adaptive algorithm selection [135], which may also benefit from IALE transferable policy.
To summarize, our work touches upon several of these directions and may serve as a basis
for, e.g., hybrid, task-independent AL strategies learned from data.

Learning similarity from annotators requires many computationally expensive steps, such
as the selection of samples or the re-training of models. Further simplifications on the query
selection method [5] or using auxiliary tasks [15] may reduce these costs. Concretely, the
side-information available in different application domains, e.g., the sparse labels in football
data, may serve as auxiliary tasks for finer clustering of embeddings and pre-selection of
query samples. This may become relevant for transferring our methods [P1, P3] to novel
datasets with denser or hierarchical annotations, or to other tasks like classification. Recent
work leverages such hierarchical knowledge structures. Yin et al. elicit information from
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experts [117] and Zhang et al. perform Few-shot classification [134]. Both embed data such
that distances are semantically meaningful and can be organized hierarchically, such that
fewer queries or shots are required. These types of approaches may directly benefit from
more efficient representations [P1], from more meaningful distance metrics [P3], or from
querying experts less often [P3]. An additional application besides similarity search is
active search [59]. Once a ordinal embedding has converged and is adapted to a specific
similarity metric, it may enhance this type of IR. Concretely, recommendation systems or
search engines, that use vector databases or directly embeddings, e.g., sports scene retrieval
systems, may not query for similar samples but instead search for yet unknown samples
directly. Such search methodologies [59] may use the previously unavailable fine-tuned
embedding generated by our methods [P1, P3] for trajectory-based applications as a basis
to accelerate the iterative active search.

To conclude this work, we put our contributions into perspective. As of today, many ML
applications face a scarcity of annotated data [140], and will most likely continue to do so.
This is especially relevantwith the proliferation of ML to novel applications and data sources.
At the same time, the trend of generating more data of higher complexity accelerates [141].
These developments clash with the need for high quality annotations, especially for high
risk applications 1. Hence, the key enabler for ML systems remains the human-in-the-loop,
who plays a crucial role in providing expertise and high quality annotations for models’
initial training and even their operating life cycle [142]. We hope that our contributions
facilitate a more reliable and efficient use of annotator time, even on highly complex data,
and the generation of error free and high quality annotations for an ultimately better and
more trustworthy use of Machine Learning.

1 EU proposal of Artificial Intelligence Act from 2021 even mandates high annotation quality in Art. 10, 3.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
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This work proposes metric learning for fast similarity-based scene retrieval of unstructured ensembles of
trajectory data from large databases. We present a novel representation learning approach using Siamese
Metric Learning that approximates a distance preserving low-dimensional representation and that learns to
estimate reasonable solutions to the assignment problem. To this end, we employ a Temporal Convolutional
Network architecture that we extend with a gating mechanism to enable learning from sparse data, leading to
solutions to the assignment problem exhibiting varying degrees of sparsity.

Our experimental results on professional soccer tracking data provides insights on learned features and
embeddings, as well as on generalization, sensitivity and network architectural considerations. Our low
approximation errors for learned representations and the interactive performance with retrieval times several
magnitudes smaller shows that we outperform previous state of the art.
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1 INTRODUCTION
The wide spread of devices and systems that generate positioning data allows for trajectory mining
in a variety of applications. This has the potential to improve and revolutionize how we are
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∗Both authors contributed equally to this research.

Authors’ addresses: Christo�er Lö�er, christo�er.loe�er@iis.fraunhofer.de; Luca Reeb, reebla@iis.fraunhofer.de, Fraun-
hofer IIS, Nordostpark 84, Nuremberg, Germany, 90411 and Friedrich-Alexander-University Erlangen-Nürnberg (FAU),
Erlangen, Germany; Daniel Dzibela, Fraunhofer IIS, Nuremberg, Germany, daniel.dzibela@iis.fraunhofer.de; Robert Marzil-
ger, Fraunhofer IIS, Nuremberg, Germany, robert.marzilger@iis.fraunhofer.de; Nicolas Witt, Fraunhofer IIS, Nuremberg,
Germany, nicolas.witt@iis.fraunhofer.de; Björn M. Esko�er, Friedrich-Alexander-University Erlangen-Nürnberg (FAU),
Erlangen, Germany, bjoern.esko�er@fau.de; Christopher Mutschler, Fraunhofer IIS, Nuremberg, Germany, christopher.
mutschler@iis.fraunhofer.de.

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive Version
of Record was published in ACM Transactions on Intelligent Systems and Technology, https://doi.org/10.1145/3465057.

ACM Trans. Intell. Syst. Technol., Vol. 13, No. 1, Article 6. Publication date: February 2022.
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For instance, in sports applications, a central problem is the search and retrieval of similar
occurrences in trajectory databases [31]. Such occurrences, i.e., scenes, can be formally de�ned
as ensembles of trajectories, i.e., trajectories of the movements of multiple agents. Before we can
compare (i.e., derive the similarity between) two scenes, we need to �nd an optimal assignment
(assignment problem) for the particular trajectories, i.e., we need to �nd the correct match between
the corresponding actors/players. Next, we can calculate a suitable distance metric between scenes.
An incorrect assignment in the �rst step induces a large error in the estimated distance, i.e., the
similarity between the two scenes. However, alignment and pair-wise comparison quickly becomes
infeasible for larger databases (such as those that are available in the sports industry).
Previous work that deals with the infeasible computational complexity that comes with large

databases either �lters the data [10, 31, 41], learns approximations of the optimal assignment
algorithm [40], or constrains the possible assignments themselves [31, 32] and thereby introduces
approximation errors. While these approaches do in fact accelerate search and retrieval, their
primary goal is to reduce the search space. However, this not only results in less optimal assignments
and quality but also yields sub-optimal retrievals due to the limited amount of searchable data.

Fig. 1. Two scenes from a soccer database.

Fig. 1 illustrates two scenes from a trajectory database
of soccer players of the German Bundesliga. Each scene
shows variations of a reoccurring pattern that can be found
throughout the season. Each single trajectory follows an
inherent strategy and role, that may di�er between teams
and even for each player over the course of the game. Our
primary goal is to �nd such similar scenes without con-
straining neither trajectory assignments nor the total search
space over all samples in the database. A fast search scheme
for high-dimensional trajectory sets is bene�cial to sports-
related applications and especially team sports (such as
football, soccer, basketball, etc.), but it is not limited to that:
it is also bene�cial for work that is as diverse as searches
similar trajectories in cellular positioning data for human
mobility analysis [33], mining of frequent patterns in urban
transportation [21], clustering air tra�c trajectories for op-
timization [11], and even wildlife management in ecological
behaviour analysis [8].
Current scene retrieval systems (especially in sports) are mainly based on manual annotations

by analysts such as [20], or other automatic classi�cation attempts that are equally expensive, e.g.,
highlight extraction using video data [12]. Still, tracking data becomes ubiquitously available and
should become more usable despite it being unstructured. However, among the main challenges
are the indexing and retrieval within these large trajectory datasets [44], given (i) multiple moving
agents and (ii) the quantity of data. First, multiple trajectories of di�erent roles are present, e.g.,
player formations in adversarial team sports. To calculate the distance between two scenes correctly,
a correct assignment between trajectories is key. Simplifying this task by solving assignments with
available meta-information only works for few applications such as player roles [31] in sports.
However, this neither generalizes to other applications nor does it work in all sports. E.g., in soccer
alone at least ten di�erent formations exist [2] and players randomly break formations [2]. On the
other hand, methods to optimally solve the problem such as combinatorial optimization [31] do
not scale well. Second, given a manually annotated query scene, �nding similar scenes in an entire
sports season worth of data is computationally expensive. Suitable trajectory similarity functions
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use metrics such as Dynamic Time Warping [29], Longest Common Sub-Sequence [37], or the
Euclidean distance [31] that all need pair-wise comparisons.
This article proposes an approach which presents several solutions to the assignment problem,

and which approximates the optimal distance between ensembles of trajectories, speeding up the
computation needed for scene retrieval. We train a Siamese Neural Network (SNN) which learns a
lower dimensional embedding for a given dataset, and which preserves distances between trajecto-
ries independent from use case speci�c distance metrics. This accelerates pair-wise comparisons
while keeping the approximation error low (as we show for the Euclidean distancemetric for a whole
season of trajectories from games played in the German Bundesliga). This in turn enables novel
interactive applications that have previously been intractable. Our contributions are as follows:

• We propose sparse and dense estimations to the assignment problem suitable for learning
with deep neural networks. To this end, we extend the learning model with Gated Temporal
Convolutions as a masking mechanism.

• We show that the learned embedding of a Siamese Neural Network, using these Gated
Temporal Convolutions, approximates trajectory distances with a low approximation error.

• We show and discuss results for the scene similarity on a large soccer trajectory dataset. Our
study includes an analysis of the embedding neighborhood and considers real wall-clock
time compared to prior state of the art. We furthermore evaluate the generalizability of our
method and perform detailed ablation studies.

The rest of the article is structured as follows. Sec. 2 discusses related work on trajectory similarity,
sports scene retrieval systems, and approaches which solve the assignment problem. Sec. 3 formal-
izes the problem and Sec. 4 presents the details of our method. We show our experimental setup in
Sec. 5 and discuss the results in Sec. 6. Sec. 7 concludes.

2 RELATEDWORK
We discuss related work on the assignment problem (Sec 2.1), learning distance metrics (Sec. 2.2),
and the search and retrieval of trajectories (Sec. 2.3), as well as the search and retrieval’s special
cases with event data (Sec. 2.3.1) or with tracking data (Sec. 2.3.2).

As we primarily target sports scene analysis, we give a brief overview of relevant work from that
area. Usually, methods applied here do not retrieve similar scenes but analyze sports event- and
position-data to predict di�erent properties, e.g., classi�cation and clustering. Recently, Wenninger
et al. [39] evaluated modern machine learning models, e.g., convolutional or recurrent networks,
to predict tactical behavior in beach volleyball such as play direction and their success. An older
branch of research, among others [13, 26, 30], investigated the use of self-organizing maps that use
the learned map for downstream tasks such as classi�cation. The speci�c problem of classifying
ensembles of trajectories was discussed in [34], however, the assignment problem was solved
by design (the data was provided through skeletal tracking). The analysis of spatio-temporal
trajectories of multiple players was proposed in [6, 7]. Trajectories are approximated with splines
that are �ltered and normalized. Several similarity measures are compared in terms of classi�cation
accuracy using the reduced representations. However, as assignments must be provided manually,
the applicability is limited.

2.1 The Assignment Problem
The Hungarian algorithm [18] is an optimal solver for the assignment problem. It is used in object
detection [5] to match proposed and actual object bounding boxes, in object tracking [43] to
associate the identity of objects over time, and in identi�cation [40] to match words based on
their semantic similarity. Approximations [19] use neural networks based on similarity or cost
matrices. As neural networks are also capable of processing unaligned data, the pre-processing
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step can be skipped, either as part of the network architecture [19, 40] or as part of the learning
objective [5, 43]. In our work we choose to learn it as part of the learning objective and jointly
optimize a distance-preserving lower dimensional representation of the data that accelerates pair-
wise comparisons. To this end, we extend the model architecture with masks to support sparse
data, i.e., with Gated Temporal Convolutions, to learn assignment methods from the data.

2.2 Distance Metric Learning
In metric learning, relevant approaches either learn a better approximation of the distance function
or instead a lower dimensional transformation of the data that preserves a distance. Approximations
as proposed in [17] are motivated by the fact that exact metrics are either not smooth enough
(over small perturbations in the inputs) or too unreliable for the application. They formulate metric
learning as a regression problem that is solved with Siamese Neural Networks [4] that learn the
similarity. Similar to our work, a distance acts as a regression target to the network. However,
the proposed model only emits a distance given two inputs, i.e., the Siamese network must be
applied to a pair of data. In contrast, our approach also allows to process single inputs, so that
we can construct their embedding o�ine, before using them in search. This allows us to quickly
search for similar examples. Sentence-BERT [27] approximates similarity for natural language
processing, speci�cally for sentence-pair regression, using ideas similar to dimensionality reduction.
The authors propose an attention-based transformer network together with Siamese or Triplet
Networks to learn a semantically meaningful embedding based on a pair-wise similarity metric
as regression target (i.e., they estimate semantic textual similarity). This approach aims to learn
a lower dimensional embedding for pairs of sentences. The authors do not focus on ensembles
of sentences and have no assignment problem to deal with. However, we build upon the basic
methodology and extend it appropriately for learning an ensemble similarity.

2.3 Trajectory retrieval
Most trajectory retrieval systems make special assumptions such as temporal bounds of interesting
search spaces or focus on other data-inherent properties that cannot be generalized. For instance,
Yadamjav et al. [41] propose a framework for query retrieval of similarly co-moving trajectories,
e.g., convoys of objects. An indexing structure �lters the dataset based on temporal constraints
(i.e., discards old samples to improve computational performance) and is fast due to an in-memory
table lookup. Similarity metrics such as a point-wise max-min distance, i.e., Hausdor� distance, are
extended to work on subsets of cluster points. In contrast, our approach builds a distance-preserving
approximated representation of the complete dataset and thus allows scaling to larger problems,
while at the same time accelerating lookup speed.

2.3.1 Event-Data Based Sports Play Retrieval. Instead of predicting similarities directly from trajec-
tory data, the methods that search in event-data develop query formulations on annotated event-data.
The work closest to ours is presented by Richly et al. [28]. They aim to retrieve scenes using a
graphical query language composed of action sequences in user-speci�ed areas. Another approach
by Decroos et al. [9] uses an SQL-like query language instead, which also allows the OR-operator
to relax search constraints over characteristic, user-de�ned functions.

However, annotated event data is both expensive to acquire and relatively sparse. Moreover, as
such search approaches operate over event-data, they are inherently limited in their performance.
Queries de�ned on tracking-data on the other hand allow to search for very speci�c situations.
More importantly though, the need for event-data makes these approaches only applicable when
(expensive) event-data annotations of su�ciently high quality are available.
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2.3.2 Tracking-Data Based Sports Play Retrieval. There is also work that uses trajectory ensembles
directly as queries for similarity-based retrieval. Such methods must handle the assignment problem
and the expensive distance computation.

Chalkboarding [31] approximates the assignment problem using player roles and a match- and
team-speci�c role/formation template, which are learned from data as proposed in [3]. While this
introduces an unquanti�ed error, it speeds up retrievals considerably. However, the approach does
not generalize well to other domains such as soccer, where the role assignments are not static within
matches and teams. Sha et al. [32] address the assignment problem with hierarchical templates
which are iteratively aligned over all matches. This relaxes the �xed role assignment, making
it applicable to more applications. However, the hierarchy depth is not determined by semantic
properties of the data, but with respect to computation speed, e.g., cluster size. For each cluster,
a suboptimal assignment template is then used for the expensive distance computations on data
of (unchanged) high dimensionality. To compare distant elements, even less optimal assignment
templates are used. In contrast, we propose a data-driven approach to the assignment problem that
uses optimal solutions as learning targets instead of �nding arbitrary approximations.
An acceleration of distance computations can be achieved by a pre-clustering of the search

space [10, 32]. Sha et al. [32] propose a k-means clustering that strongly depends on the Euclidean
distance as its similarity measure to cluster the scenes. An interesting way to re�ne search results
was proposed by Di et al. [10], who extended Chalkboarding by using a ranking function that is
sensitive to user preferences, which are determined from simulated click-through data. In contrast
to clustering approaches we learn a low-dimensional representation and solve scene retrieval
without a pre-clustering of the scenes, making our approach agnostic to the underlying similarity
metric.
An alternative to Chalkboarding is proposed by Wang et al. [38] who matches segments into

coherent parts, i.e., ball possession phases, which they process analogously to sentences in natural
language processing. Their network learns relative similarities and relations between these segments.
While a qualitative user-study proves it to be superior to Chalkboarding, it lacks �exibility. As
user-drawn query-sketches cannot be used as queries, their framework cannot handle sparsity in
queries. Furthermore, single trajectories from an ensemble are indiscernible to the model, e.g., users
cannot give higher weight to the ball’s trajectory if that is not learned during model training. The
embedding only represents a relative ordering that is speci�c to a similarity metric that includes
relevance features for the whole ensemble.

3 PROBLEM FORMULATION
In this work, we investigate the more general case of trajectories ensemble retrieval (i.e., scene
retrieval) where the ordering between trajectories is unknown. We consider trajectory ensembles
as unordered, �x-sized sets of trajectories. Trajectories are temporally ordered sets of data such as
spatial positions or other arbitrary types of information, and we assume that the trajectories are
spaced equidistant. We represent trajectories as ( ⇥) matrices, where ( is the spatial dimension of
the trajectory, as follows:

ÆG =

266666664

G11 G12 ... G1)
G21 G22 ... G2)

...
...

. . .
...

G(1 G(2 ... G()

377777775
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Fig. 2. Two trajectory ensembles with time increasing from le� to right (-1 to 5). In the le� ensemble A,
the trajectories are ordered top-down, in the right ensemble B, they are ordered bo�om-up. Aside from the
di�erent indexing, the data are identical.

For 3D trajectories we set ( = 3 and for 2D trajectories ( = 2, respectively. The distance 3 between
two trajectories ÆG and ÆG 0 is given by the average Euclidean distance at each point in time:

3 (ÆG, ÆG 0) =
1
)

)’
C=1

| |ÆG:,C � ÆG 0:,C | |2 (1)

We chose the Euclidean distance based on the evaluation of various distance functions for the
sports use case [31]. However, our method does not depend on it, as we use Siamese Networks as
general function approximators.
Trajectory ensembles are given by - = {ÆG (1) , ÆG (2) , ..., ÆG (# )

} where ÆG (1) , .., ÆG (# ) are trajectories.
Analogous to trajectories, we represent trajectory ensembles as tensors of shape # ⇥ ( ⇥) . Note
that we indexed the trajectories containing - with ascending integers. This ordering between
trajectories is arbitrary and di�ers from the ordering of data-points within trajectories: within a
trajectory the order has physical meaning, i.e., the time stamp. This has no equivalent for trajectories
in an ensemble. Swapping two di�erently-valued and indexed data-points in a trajectory destroys
its identity. For a trajectory ensemble, this is not the case: {ÆG (1) , ÆG (2)

} = {ÆG (2) , ÆG (1)
}. This arbitrary

indexing also represents one of the core problems, formally known as the assignment problem.
Fig. 2 illustrates the assignment problem. The optimal assignment of ensemble � and ⌫ results

in a distance of 0, because they match perfectly, i.e., trajectory 0 from � with trajectory 1 from
⌫. However, there exist more possible permutations for which the distance is much greater than
0. With every new ensemble, this optimal assignment has to be calculated again, before further
algorithms like distance calculations or clustering can be applied. In this work, we propose a
learning approach to this problem, which approximates the assignment optimization and preserves
distances, so that distance calculations or clustering remain possible. This example shows that
de�ning the distance between trajectory ensembles is more complex than for pairs of trajectories.
To compute their distances, a permutational optimization of their component’s order is necessary
for all pairs of ensembles - and - 0, that minimizes the sum over all distances between component
trajectories. The Hungarian algorithm [18] solves this in polynomial time of O(=3) by iterating
over the cost adjacency matrix, but is still too slow for large databases.

Let % (- ,- 0) be the permutation function found by the Hungarian algorithm which aligns - to
- 0. When % (- ,- 0) is applied to - , the indices that give the ordering are re-assigned in such a way
that the sum of distances between trajectories with equal indices in - and - 0 is globally minimal:

3 (- ,- 0) =
#’
8=1

5 (-% (- ,- 0) (8) ,-
0
8 ), (2)

with % (- ,- 0) = minÕ#
8=1 5 (-6 (8 ) ,- 08 )

{6 : 6 2 {1, . . . ,# }! {1, . . . ,# }} and 6 being invertible.
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Until now, we considered trajectory ensembles as unordered sets and treated trajectories equally.
However, in special cases, such as team sports, we can apply some obvious simpli�cations without
loss of generality. For soccer, we treat both teams and the ball di�erently, i.e., we always align
attacking to attacking and defending to defending players, the ball trajectory to the ball trajectory,
goalkeepers to goalkeepers. To compute the overall distance between two scenes, we sum up all
individual trajectory ensemble distances, e.g., for soccer the distance between the attacking or
defending team and the ball. These simpli�cations reduce the problem size of the trajectories that
have to be assigned, in the case of soccer from 23 to 10.
We draw an example based on the two scenes from Fig. 1. Each trajectory ensemble has a

color, i.e., the attacking team in blue, the defending in green and the ball in red. We compute the
distance between the two scenes as follows: (1) we compute the optimal assignment of the �rst
team’s trajectories, (2) we compute 30 by adding up the trajectory distances between all matched
trajectories, (3) we repeat step 1 and 2 for the second team (yielding 31), (4) we add up all trajectory
distances between the ball trajectories and both goal-keeper trajectories (yielding 32), and (5) we
�nally sum up all distances: 30 + 31 + 32 which gives the total distance 3 .

4 DEEP SIAMESE METRIC LEARNING
With Deep Siamese Metric Learning, we propose a principled approach to approximate the exact
similarity between trajectory ensembles. Instead of a hand-crafted approximation, we directly learn
the exact similarity while also improving retrieval speed. The similarity metrics’ accuracy directly
depends on how the assignment problem is approximated, hence we propose four approaches that
aim to alleviate previous limitations.

As traditional methods do not scale well, their search scope is limited to small scene datasets. This
is due to the high time complexity, as described previously. For (optimal) trajectory assignments,
the time complexity is O(B · =3) using the optimized Hungarian algorithm for B scenes. In our
approach, we simplify the search space using metric learning and di�erent assignment methods,
reducing the cost to O(B ·"), where" is the embedding size of the metric learner.
First, for metric learning, we follow a similar idea as Sentence-BERT [27], that uses a Siamese

Neural Network to map natural language sentences into an embedding in which the cosine distance
corresponds to the semantics’ similarity in a supervised regression setting. In our work we transfer
and extend that idea to trajectory ensemble similarity. We map scenes into an embedding space in
which the distance can be computed more e�ciently (while being close to the original distance).
To select the best distance for the sports use case we rely on previous work [31], where the authors
evaluated a set of commonly used trajectory similarity metrics with regard to their suitability
to classify sports plays into 38 distinct categories chosen by experts. Their results showed the
suitability of the !2 similarity. However, our approach is not limited to this choice as we can resort
to any other similarity measure as well.

Second, we deal with the assignment problem in our framework, as well. As calculating the opti-
mal assignment is too expensive to compute for datasets of practically relevant size, approximations
were used previously, e.g., based on roles and formations in sports [31]. However, these �xed assign-
ments of roles do not generalize well [32], not even to variations in the same sport, and neither to
other use cases with more trajectories and formations [2]. Moreover, this fundamental assignment
problem is intrinsic to sports, as creative changes to �xed strategies are especially bene�cial for
success [25]. These circumstances motivate alternative solutions to the assignment problem, i.e.,
forms of sparse encoding, location-based grid assignments or even random assignments, that we
propose in Sec. 4.3.

ACM Trans. Intell. Syst. Technol., Vol. 13, No. 1, Article 6. Publication date: February 2022.



6:8 Lö�ler and Reeb, et al.

- - 0

Æ̂G Æ̂G 0

5\ (- ) 5\ (- 0)

3 (- ,- 0)

3̂ ( Æ̂G, Æ̂G 0)

⇡

Fig. 3. Schematic of the approach that projects the high dimensional data to a low dimensional representation.
The trajectory ensembles - and - 0 are passed through a Siamese network 5\ producing the embedded scenes
Æ̂G and Æ̂G 0 respectively. The network is then trained such that the distance in the embedding 3̂ matches the
ground-truth 3 .

4.1 Objective and Metric Learning Scheme
We consider a non-linear function approximator 5\ with parameters \ that maps inputs - 2
S = R#⇥2⇥) (e.g., a trajectory ensemble) into an embedding Ŝ = R" such that the distance
3 : S ⇥ S ! R over the input space is preserved in Ŝ. More speci�cally, the distance function
3̂ : Ŝ ⇥ Ŝ ! R over the embedding preserves the property 3̂ ( Æ̂G, Æ̂G 0) ⇡ 3 (- ,- 0) with Æ̂G = 5\ (- ) for
all - 2 S. Fig. 3 illustrates the approach. If 3 and 3̂ are equal for every scene pair - and - 0 we
can evaluate 3̂ instead of calculating the computationally expensive ground-truth distance 3 . This
speeds up the retrieval time considerably.
We use the same distance function, i.e., the Euclidean distance 3̂ ( Æ̂G, Æ̂G 0) = | | Æ̂G � Æ̂G 0 | |2, as the

distance function 3̂ between embedded inputs. This choice enables a wide range of machine
learning algorithms to the embedding for further processing, e.g., to restrict the search space via
clustering [32]. For 5\ , we use a neural network composed of several residual temporal convolution
layers for the feature extraction together with fully-connected layers to map these features to the
embedding space. The observations are hence pairs of trajectory ensembles, i.e., (- ,- 0).
The dataset size is quadratic in the number of trajectory ensembles available and training on

all permutations hence quickly becomes infeasible. Instead, we sample pairs uniformly at random
and minimize the empirical risk, i.e., min\ EG,~⇠D [!(5\ (G),~)] where D is the data generating
distribution. We use the following loss function:

!(- ,- 0) = ( | |5\ (- ) � 5\ (-
0
) | |2 � 3 (- ,-

0
))

2, (3)

i.e., the Mean Squared Error (MSE) and include two regularization terms:

| |5\ (- ) | |2 + ||5\ (-
0
) | |2 + ||\ | |2. (4)

The �rst term penalizes embedded points far from the origin and the second is a standard !2
weight regularization term that penalizes large weights in the parameters of the neural network.
Note that the �rst term is required for convergence as the norm of the di�erence between two
points is shift-invariant, i.e., as there are in�nite optimal solutions if no order is imposed.
We use two identical Siamese Neural Networks (SNN) [4] that process distinct inputs that

are joined by a metric function, i.e., the distance function. Each twin projects the input into the
embedding space, on which we compute the loss. In contrast to the conventional use, we never
join the outputs of the twins in a joint layer. Instead, the Euclidean distance of their outputs is
directly compared to the ground-truth distance. This is due to the di�erent problem formulation,
as conventional SNNs learn a similarity metric based on class labels, whereas we use the networks
to directly learn an existing metric [27]. Note that the structure of this solution is well tailored to
the problem setting: 5\ is deterministic, therefore 3 ( Æ- , Æ- ) = 3̂ ( Æ̂G, Æ̂G) = 0 (identity is indiscernible)
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and 3̂ ( Æ̂G, Æ̂G 0) = 3̂ ( Æ̂G 0, Æ̂G) (symmetry) is given by construction. In essence, the SNN learns a distance-
preserving dimensionality reduction.

4.2 Siamese Network Architecture
Our SNN processes sparse temporal data. While historically recurrent networks such as Long
Short-Term Memory (LSTM) [15] have been the dominant approach to process time-series data,
more recent variants of convolutional networks such as the Temporal Convolutional Network
(TCN) are more successful [35, 36]. Bai et al. [1] apply TCN to a wide variety of datasets with en
par or better results than LSTMs while being faster to train.

Gated Temporal Convolution 

conv

split

σ
Χ

cat

2C x T

C x T C x T

2C x T

Fig. 4. Schematic of the gated
temporal convolution operation.

The core di�erence of TCNs compared to classical convolu-
tional networks is the left-padded same-convolution. Intuitively,
this means that the history is padded while the present is not.
This mechanism implicitly assigns weight to data based on its re-
cency, as values in the past are replaced by zero-padding. A large
bene�t is the performance: TCNs are inherently parallelizable as
they compute responses locally and stationary by using the last
: time-steps. TCNs are hence well suited for data with a maxi-
mum dependency length, such as the trajectory ensembles in this
work, for which we require a common length by construction. In
addition, the assignment methods may produce sparse input data
(see Sec. 4.3) as, for instance, there are at least 47 roles in soccer
with only 23 trajectories including the ball. Hence, we require
an architecture that can easily handle missing inputs. Prior work on TCN [35, 36, 42] provides
methods that explicitly handle sparsity successfully in the domains of image and audio processing.
We adapt the gating mechanism from [42] where the masks are passed to convolution layers

alongside the data. The neural network continuously updates the masks and uses their information
to extract features. Following a convolution operation, the masks are applied to the data in a
di�erentiable way, i.e., by multiplying the data with the sigmoid of the masks. This is visualized
in Fig. 4. The input x 2 2⇠ ⇥ ) is composed of ⇠ ⇥ ) values and an equally shaped mask. The
temporal convolution layer extracts features in x and updates the mask. The mask channels are
then passed through the sigmoid function and multiplied element-wise to the value channels. In
the end, value and mask channels are concatenated and returned. We adapt this gating mechanism
to 1-dimensional time-series data for TCNs and refer to it as Gated Temporal Convolution.

Gated Temporal Conv.

Gated Temporal Conv.

ReLu

+

x

x̂

ReLu

Fig. 5. Residual Gated
Temporal Convolution.

The network architecture itself is similar to the one in [1] and is based
on a Residual Network (ResNet) [14]. While we selected this architecture
due to its previous use with gating mechanisms (although on data from a
di�erent domain), its general popularity, and typically good performance,
our proposed method is not limited to the use of this speci�c architec-
ture. We adapt the temporal convolution block from [1] by replacing the
regular convolutions with Gated Temporal Convolutions. The network
is composed of a series of residual Gated Temporal Convolution blocks,
see Fig. 5 with a fully-connected layer as an embedding space at the end.
The ResNet’s typical skip-connections add the input of the residual path
to the output to enable deeper networks, see Fig. 5. The Recti�ed Linear
Unit (ReLU) activations [23] after each convolution do not change values in the mask channels, as
their range is [0, 1]. The channel size ⇠ is constant throughout the network but the dilation rate is
increased with depth.

ACM Trans. Intell. Syst. Technol., Vol. 13, No. 1, Article 6. Publication date: February 2022.



6:10 Lö�ler and Reeb, et al.

...
...

Trajectories with roles Role to channel mapping

Fig. 6. Channel assignment by role: the trajectories on the le� are assigned to channels based on their role
A . Each channel corresponds to only one role, e.g., channel1 always contains le� wingers or remains empty
(such as channel0.)

4.3 The Assignment Problem
To estimate the similarity between two trajectory ensembles we need to have a reliable assignment
of trajectories between the two ensembles with each trajectory itself being of dimension ⇠ ⇥) .
This is di�erent from convolutional network learning on image data where we assume a stable
ordering of color channels. Our idea is to still consider trajectory ensembles like images when we
learn convolutional �lters. We map each trajectory to a channel, so that the kernel learns on the
⇠-dimensional space with ⇠ as the temporal information for the multiple intensity values of ) .

We require a stable ordering of channels (as it is the default case for color channels in image
processing). A channel encodes information that convolution kernels learn, and neural networks
presumably even extract an abstract meaning from these. Hence, we also construct assignment
schemes that aim for relatively stable orderings. However, we also investigate if a random assign-
ment (that breaks with the assumption) is also a suitable channel assignment method.

(1) Random Assignment. For each game, the trajectory assignment to a channel is stable, but
then random in between games. This introduces randomness as the assignments preserve no roles.
We hypothesize that this unbiased assignment looses valuable additional meta-information, e.g.,
player roles or positional grids, that the more sophisticated schemes can capture.
(2) By Role. For each trajectory, we may know meta information on its speci�c role, e.g., in

soccer, there exist a multitude of formations. We can construct an assignment that assigns each role
a separate channel. Given trajectory ÆG (8) with a role A , we assign ÆG (8) to the channel 2 (A ), where 2
is a bijective map from the set of roles to channel indices. The roles are unique in each scene. The
twins of the Siamese Network can learn two trajectory ensembles where both have 21 populated,
but one twin has channel 20 masked out in favor of another channel, see Fig. 6 for an illustration.
This assignment method leads to sparse input data when the roles in two compared scenes do

not match up. For the soccer use case, a total of 23 roles are de�ned but only a subset is populated
with data. With two teams, this results in a total of 47 channels, i.e., 23 per team and the ball, and
a high degree of sparsity. We �ll empty channels with zeros and use masks during the training
procedure to deal with these missing values.
(3) Inferred from data. Alternatively to using meta information, we infer assignments from

trajectory data. We construct these assignments either as role positions, using a �xed set of arti�cial
template trajectories similar to [32], or as grid positions, that are uniformly spatially distributed. Both
approaches are illustrated in Fig. 7. We calculate role positions using the Hungarian algorithm [18]
and align the trajectory ensembles to the template. Each position ? in the template is mapped to
channel 2 (?) bijectively. If trajectory ÆG (8) is assigned to ? 9 , ÆG (8) will be inserted into 2 ( 9). Each
cross (position) in Fig. 7a corresponds to a channel-trajectory pair and symbolizes a role. Hence,

ACM Trans. Intell. Syst. Technol., Vol. 13, No. 1, Article 6. Publication date: February 2022.



Deep Siamese Metric Learning 6:11

Attribute Range Meaning
Identity N The data-generating entity, e.g., player-id.
Role {0, . . . , 21} Encoding of player role
Team {0, 1} Encoding of the team
Period {0, 1} Game period
X [�52.5, 52.5] Position in metersY [�34, 34]
T N Time of recording
Ball possession {0, 1} Encoding of team in ball possession
Game activity {0, 1} Indicates if game was paused or active
T N Time of recording

Table 1. Trajectory data and meta information in the dataset.

there are 22 positions in the template for the soccer use case, transforming the data into a sparse
representation.
To calculate grid positions we use an unbiased template with increased spatial resolution. The

network thus learns a set of roles from data instead of relying on pre-de�ned roles. This increases
sparsity but also computational cost. Similarly to role positions, we again use the Hungarian
algorithm to align the trajectory ensembles (during training). The Siamese networks rely on
the gating mechanism to handle sparse inputs that result from some assignment methods, an
architectural property that generalizes beyond the soccer domain. Section 5 shows a performance
analysis and ablation study which discuss the bene�ts of our proposed solution.

5 EXPERIMENTAL SETUP
5.1 Dataset
The dataset we used for our experiments consists of 306 soccer matches from the 1. Bundesliga
from season 2014/15. We discarded two of these games due to incorrect or missing annotation. For
each match, positions for each player and the ball were extracted from multi-perspective video
feeds at a sampling rate of 25 Hz. The trajectory data structure is given in Tab. 1, and includes
meta-information such as roles, ball possession or whether the game was active or not.

(a) Role position template. (b) Grid position template.

Fig. 7. Channel assignment templates: each cross indicates the constant position of a trajectory in the
template over time. Fig. 7a shows an assignment template based on the expected role position. Fig. 7b shows
an assignment template based on a grid of trajectories. It is composed of nine di�erent positions in the
horizontal axis and five in the vertical axis. The di�erence between trajectory counts for each axis was chosen
such that the positions are approximately spaced out equidistantly.
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Pre-processing.We describe the pre-processing steps to convert the dataset into an appropriate
scene representation for Siamese Neural Networks with Gated Temporal Convolutions. We extract
game scenes of �xed length to generate trajectory ensembles. In our experiments, we set the length
to either 5 s (as suggested in [10, 31, 32]) or 20 s (which was suggested by a number of sports
scouts we interviewed). For our experiments, we simplify the implementation by applying several
constraints to the extracted data1:

• One team has signi�cantly more ball possession than the other (this circumvents an assign-
ment over teams).

• The attacking team plays from left to right in order to use an absolute coordinate system.
This ensures that di�erences if the playing direction in two otherwise identical scenes do not
complicate the distance calculations.

• The game is active (not paused) for most of the time during the scene. This �lters irrelevant
parts of the game.

• No players are missing during the scene (even though our method could handle sparse data).
Normalization. Common normalization schemes such as mean subtraction and division by

standard deviation (assuming a Gaussian distribution) is impractical for distance functions as
maximum-likelihood estimation quickly becomes intractable on large datasets. The number of
distances is quadratic in the number of scenes, so we approximate the normalization, while the
statistics for the inputs Æ- can be estimated directly. For the approximation, we use a running-average,
i.e., similar to batch normalization, using the following (iterative) update rules:

` (G)8+1 = (1 � V)` (G)8 + VE[G8 ] (5)

f (G)
8+1 = (1 � V)f (G)

8 + V
p
Var[G8 ] (6)

with the momentum parameter V 2 [0, 1] determining the mass of the moving average and a series
of values G= , stopping after 100,000 steps. The inputs Æ- are then normalized as:

Æ-  
( Æ- � ` ( Æ- )

)

f ( Æ- )
. (7)

For the distance3 however, the mean-subtraction must be omitted, as otherwise it may take negative
values, which the Siamese network cannot produce. Hence, we downscale the distances to preserve
ordering between samples via

3 ( Æ- , Æ- 0)  
3 ( Æ- , Æ- 0)

f (3)
. (8)

5.2 Configuration
For our experiments, we extract in total (after pre-processing) about 1,200,000 scenes of 5 s and
400,000 scenes of 20 s from 304 games. We split the scenes extracted from the matches into
three sets for training, validation and test at 80/10/10% ratio, e.g., for 20 s long scenes this yields
309,665/44,424/44,536 samples per dataset. However, due to its combinatorical nature, we cannot
process all possible combinations and their distances. Hence, we construct large subsets for 5 s and
20 s by randomly sampling scene pairs and computing their ground-truth distances, resulting in
(per scene length) 10 million pairs for the train dataset, and 1 million each for validation and test
dataset.
For all experiments we use PyTorch [24] and the Adam optimizer [16] with an initial learning

rate of [ = 14�3 and V1 = 0.9 and V2 = 0.99 for the momentum terms, the decay factor B[ = 14�1

1These are only meant to simplify our implementation but do not pose any limitations on our method in general.
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every #[ = 5 epochs, for 15 epochs in total. We set the !2 weight penalty _1 to 0.001. Preliminary
experiments showed no convergence issues due to drifting, hence we set the embedding !2 penalty
_2 = 0. All inferences are computed using single-threaded code on an AMD Ryzen 7 2700 processor
with 16GB RAM and a GeForce RTX 2070 GPU while we use NVidia Tesla V100 GPUs for training.

5.3 Evaluation Metrics
The evaluation metrics measure the errors introduced by the learned representations. For retrieval,
we are interested in (1) the structural correspondence, (2) the ordering and the neighborhood
structure, and (3) the retrieval set comparison.
(1) Structural correspondence. First, we measure the structural correspondence between the

distance of pairs in the original and the learned representation using theMSE and theMean Absolute
Percentage Error (MAPE). MAPE is the expected absolute error relative to the ground-truth in
percent, e.g., a MAPE of 10% means that on average, the prediction is o� by 10 percent:

MAPED =
1
|D|

|D |’
8=1

|
3 ( Æ-8 , Æ- 08 ) � 3̂ ( Æ̂G8 , Æ̂G

0

8 )

3 ( Æ-8 , Æ- 08 )
|. (9)

(2) Ordering and neighborhood. The ordering and neighborhood information of scenes is
crucial. However, evaluating the performance of approximations of the nearest neighbor search
on the full dataset is prohibitively expensive. Hence, we only work on the smaller subset of the
validation dataset MBD1 , containing 5025 scenes with all 5025 · 5024/2 ground truth distance pairs.
We use the top-N Mean Spearman Rank Correlation Coe�cient (MSRCC) as a metric on MBD1

to analyze the structure of the embedding, i.e., the scene ordering between the ground-truth and
the Euclidean distance in the embedding. We use rank correlation to quantify the correspondence
between the scene ordering in the ground-truth and in the embedding as approximation errors
that change the ordering between samples are more relevant.

We calculate the MSRCC as follows. For a query scene Æ-@D4A~,8 we �nd the # nearest neighbors
{ Æ-0, ..., Æ-# } and the distances to them �8 = {3 ( Æ-@D4A~,8 , Æ-0), ...,3 ( Æ-@D4A~,8 , Æ-# )} using the ground-
truth distances. We compute their distances in the embedding �̂8 = {3̂ (5\ ( Æ-@D4A~,8 ), 5\ ( Æ-0)), ...
, 3̂ (5\ ( Æ-@D4A~,8 ), 5\ ( Æ-# ))} and the Spearman rank correlation coe�cient A8 = r(�8 , �̂8 ) between
distances in embedding and ground-truth. The MSRCC for D is then the average over every query
scene:

MSRCCD =
1
|D|

|D |’
8=0

A8 . (10)

Fig. 8. Relation
between the IoU of
same-sized sets and
the accuracy.

We evaluate the top-N MSRCC for # = 100, as the nearest neighbors are
the most relevant samples for the data retrieval use case, and for the whole
dataset in order to assess the overall structure.
(3) Retrieval set comparison. To quantify how many of the closest #

scenes are retrieved via the embedding, we calculate the top-# Mean Intersec-
tion over Union (MIoU). This is the intersection between the # closest scenes
in the embedding and in the ground-truth divided by their union, averaged
over every query scene. We can therefore relate it to an adaption of the ac-
curacy metric that measures the ratio between the number of scenes that are
correctly retrieved and the number of scenes that are incorrectly retrieved in
the top-# . In Fig. 8, the MIoU is given as a function of the accuracy, e.g., the
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top-100MIoU of 0.5 means that about 67 of the 100 closest scenes were also
in the closest 100 scenes in the embedding.

6 EVALUATION
We �rst evaluate the quality of the retrievals by analyzing the scenes that our method returns
(Sec. 6.1) and by analytically comparing the embedding neighborhood structure with ground-truth
retrievals (Sec. 6.2). Next, we compare the retrieval speed of our approach against a naïve baseline
and Chalkboarding (Sec. 6.3), and assess the system’s generalization on a hold-out test dataset
(Sec. 6.4). We conduct an expansive ablation study (Sec. 6.5) that performs a sensitivity analysis on
important hyper-parameters (Sec. 6.5.1), ablates our proposed gating mechanism (Sec. 6.5.2) and
learns distances for longer scene lengths (Sec. 6.5.3).

6.1 Scene Retrieval
We begin by showing exemplary retrieval queries and results for two di�erent con�gurations of our
method, i.e.," = 2 and" = 64. The query scene @1 in Fig. 9a resembles a cross from the left �ank.
Its nearest neighbors (retrieved by our method) in Fig. 9b (for" = 2) and in Fig. 9c (for " = 64)
make it very obvious that our method is capable of learning at very di�erent levels of detail. In the
query @1 all players rush towards the defending team’s goal, i.e., the scene is highly dynamic. In
contrast, the query result for" = 2 shows a much more static game situation. The positional layout
is also di�erent: the query result for " = 2 is clinched relative to @1 in the horizontal axis. The

(a)�ery scene @1. (b) Neighbor of @1 in" = 2. (c) Neighbor of @1 in" = 64.

Fig. 9. Di�erent scenes. The start of each trajectory is indicated by a circle. The a�acking team is shown in
blue, the defending in green, and the ball in red. Fig. 9a shows the query scene with a corner kick used for
retrieval of the nearest neighbors in di�erent embedding sizes" . Fig. 9b and 9c show the query results for @1
retrieved via a 2- and 64-dimensional embedding, respectively.

(a) 2D UMAP of 64D embed-
dings.

(b)�ery scene @2. (c) �ery scene @3.

Fig. 10. The 64D embedding neighborhood that was fi�ed to a 2D manifold seemingly shaped like a curved
plane in Fig. 10a (using UMAP [22]), and we highlight the queries @1, @2 and @3. The scenes @2 in 10b and @3
in 10c show vastly di�erent plays compared to @1, especially in location. This is also visible on the manifold.
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(a) Top-|MBD1 | MSRCC. (b) Top-100 MSRCC.

Fig. 11. Le�: MSRCC for the subset MBD1 over all scenes; Right: MSRCC for the top-100 with increasing
embedding dimensionality" for each channel assignment method.

ball trajectory is also misplaced. The learned embedding resembles an approximation of the center
of mass of a scene as" = 2 does not allow for a rich representation of the scene. However, with
an increased size of" = 64 the model learns a very exact and powerful representation of scenes.
The resulting scene in Fig. 9c exhibits similar game dynamics, i.e., both teams rush towards the
defending team’s goal. This is a representative qualitative analysis which shows that our method
can retrieve subjectively similar scenes if the embedding dimension is appropriately set to capture
the actual information hidden in a scene.
Next, we analyze the learned embedding for" = 64 in order to get a clearer understanding of

what the network has learned. To this end, we visualize the validation dataset as a 2D UMAP [22]
heat map in Fig. 10a, and highlight the representation for @1 and for two additional query scenes
scenes, @2 in Fig. 10b and @3 in Fig. 10c. These scenes @2 and @3 show very di�erent games and take
place at di�erent corners. We see their positional arrangement on the learned manifold (here �tted
to 2D), that has the shape of a curved plane. We �atten out the manifold to resemble the game pitch
and see that the queries @1 and @2 are relatively close to where their games take place. Similarly,
the embedding of @3 mirrors this, as it takes place in the opposite corner. Note that while the 2D
UMAP simpli�es the learned representations to their main, positional features, we saw in Fig. 9
that additional properties such as game dynamics are also modeled.

We saw that the 64D embedding contains additional learned features, like game dynamics, and
perform better than the 2D embedding. However, Fig. 10a can only give intuitive insights. Hence, we
provide further performance metrics and more in-depth analysis in the remainder of the evaluation.

6.2 Analysis of Embedding Neighborhood
We analyze the structure of the embedding space and measure how well our method preserves
inter-sample distances and hence the ordering of the retrieval results. For this, we compare the
original ordering of scenes with their embedded form on two di�erent scales: on a �ne scale, i.e.,
relative to the 100 nearest neighbors, and on a coarse scale, i.e., the position of a scene in the
embedding relative to all others sampled from the MBD1 subset. The �ne scale is important for
evaluating how well the ordering of the most relevant retrievals is maintained between the learned
representations, i.e., it measures the precision of our approach which is an important metric for
the task of scene retrieval. The coarse scale evaluates the general feasibility of the approach, e.g.,
whether it can be used as a method for clustering as pre-processor.
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Fig. 11a shows the coarse structural score for the whole MBD1 , i.e., the top-|MBD1 | score. In this
experiment, Role Position shows the best performance, closely followed by Grid Position
and Random assignments. Role is left far behind as it has a strong inductive bias due to role
speci�c assignments that are suboptimal on more diverse scenes. Nevertheless, all assignment
methods perform better than the coe�cient of 0.986, and hence are suitable for clustering at
least. Furthermore, all assignment methods show better performance with increasing embedding
dimensionality " until " = 16, from where they settle into a plateau. Overall, all assignment
methods for any embedding dimensionality, even for" = 2, show high MSRCC, indicating that
the coarse structure is captured very well.
Fig. 11b shows the �ne scale Spearman rank correlation coe�cient averaged over the nearest

100 neighboring scenes. This directly in�uences the retrieval quality. Here, the ordering of Random
assignments is best according to MSRCC, followed by Role, Role Position and Grid Position.
Even though Role Position was marginally ahead for the overall ordering, its ordering of the
nearest neighbors is worse than Random and Role. Again, all assignment methods improve with
increasing" until" = 16, after which they plateau. In contrast to the overall ordering of scenes,
the ordering of the nearest neighbors changes strongly with di�ering assignment methods and sizes
of embedding dimensionality. Even with relatively high MAPE, the overall ordering is captured well
(Fig. 11a), but when observing the ordering at a smaller scale the errors become visible (Fig. 11b).
The better �ne scale performance of Role compared to its coarse scale results can be explained
by a greater bene�t of the inductive bias of explicit role assignments for very similar scenes, in
contrast to detrimental e�ects when scenes, and thus the formation of players, are further apart.
As the high MSRCC indicates, the overall ordering is preserved well (which enables clustering

of the search space [32]), while the �ne scale ranking is not perfectly preserved. To alleviate
the implications of this sub-optimal top-100MSRCC, we may instead evaluate the ground truth
distance to rank these 100 nearest results better, or even train a speci�c ranking algorithm for
top-100 similarly to [10].

We furthermore show the di�erences in MAPE between the larger validation set and the smaller
MBD1 in Fig. 12. Di�erences are only marginal for Role Position and Grid Position, which
perform nearly identical on both datasets. However, both Random and Role exhibit a lower MAPE
in the validation set. These two assignment methods do not generalize as well as methods that
adapt the channel assignment to the actual positional layouts of trajectories in a scene. In larger
datasets, players may often switch actual roles depending on the game’s situation [3]. Models
without positional channel information have no additional indication of the dynamic role each
player �lls in a scene.

Fig. 12. Di�erence between the MAPE on the val-
idation set and the subset MBD1 for increasing
embedding size" and channel assignment meth-
ods. Negative values indicate that the MAPE for
MBD1 was greater than for the validation set.

The high divergence of theMBD1 subset from the
validation set indicates that Random and Role only
rely on static player roles, which do not necessarily
match well with dynamic roles in scenes, whereas
the methods Grid Position and Role Position
generalize better. We consider the small di�erences
for " 2 [2, 4] to be of less importance, because
models learn little to no dynamics as the previous
experiments show. This overly simplistic represen-
tation results in a lower generalization error, but
ultimately is not really usable either. Overall, Role
Position performs strong in the �ne and coarse
settings, and also generalizes very well to larger
problems.
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6.3 Retrieval Speed
Our main goal is to enable real-time scene search
on very large datasets of trajectory ensembles. Hence, we evaluate the required retrieval time
for searches on 10K and 1M scenes and compare it with the previous state-of-the-art. For our
experiments, we use scenes of 5 s duration, with 11 trajectories per team and both teams accounted
for in the distance computation. The experiment is designed to be maximally fair, and we average
over 100 repetitions. All database scenes are in memory, no clustering is performed to limit the
search space, and the query is aligned to a template, i.e., both teams are aligned to their own
template that contains 11 trajectories.
To measure the retrieval time, we compute the distance between query and each sample in the

database. For our method, the retrieval speed is the time of one forward pass through the neural
network, followed by the computation of the Euclidean distance from the query’s embedding vector
to other embedded scenes. For all methods, we search only for the 10 scenes with smallest distance,
and do not sort the results.

We show the retrieval speed for varying sizes of embedding dimension in Tab. 2. As a baseline
we implemented a naïve (brute force) distance computation and also include Chalkboarding [31]
retrieval. With 10,000 scenes in the database, our method takes only about 10ms for "  64,
while Chalkboarding takes 346ms and Baseline even takes 65 s, which is prohibitively long. At
embedding sizes of" 2 [2, 4, 16, 64], searches are not limited by the distance function computations.
With" 2 [256, 1024] it begins to a�ect retrieval times with 17ms to 45ms. With smaller" , the
cost of computing forward passes through the network is nearly constant as only the last fully-
connected layer varies with" . The largest part of the 9 � 11<B run time is data transfer overhead,
e.g., GPU to CPU transfer and vice versa, while the distance computation time itself is minimal.

There aremainly two reasonswhy ourmethod outperforms Chalkboarding. First, Chalkboarding
expensively aligns queries to the learned template, and second, it computes the ranking based on
23 trajectories, hence one distance computation operates over a 23 ⇥ 2 ⇥ 125 dimensional tensor in
contrast to only" values in the embedding.

The larger experiment with 1M scenes corresponds to almost an entire season (305 games). As the
data does not �t into main memory we could not compute results for Baseline, Chalkboarding,
and our method with" = 1024. However, from the available experiments it is apparent that their

Method Retrieval time 10k scenes Retrieval time 1M scenes
Baseline 68.887B > 1 h

Chalkboarding 0.346B > 30 s

" = 2 0.009B 0.052B

" = 4 0.009B 0.054B

" = 16 0.010B 0.100B

" = 64 0.011B 0.287B

" = 256 0.017B 0.998B

" = 1024 0.045B -
Table 2. Evaluation of the retrieval time using di�erently sized embeddings, the Chalkboarding [31] retrieval
system and the baseline. All retrieval speed tests except for the baseline are averaged over 100 runs.
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retrieval times are not competitive, i.e., >1 h and >30 s. Instead, our method yields an interactive
retrieval time. Between" = 16 or" = 64 it o�ers an interesting trade-o�." = 16 requires only
about 35% of the time of" = 64 but increases MAPE by about 18%. The lower error rate for" = 64
should be preferred if the resulting set of nearest neighbors is not further re�ned or ranked, i.e.,
similar to Chalkboarding’s two-step cluster-then-re�ne approach.

6.4 Generalization
We also assess generalization on a hold-out dataset that contains 30 matches. We design our
experiment as follows. We sample 1M pairs from this unseen test set and compute the MAPE
between the pair-distances and their representation in the embedding. The di�erence between the
MAPE computed on the test and validation set allows us to evaluate how our approach generalizes
to unseen data.

We use the best performing channel assignment method Role Position and set the embedding
size " = 64. This o�ers a speedy retrieval with relatively low error on the validation set with
a MAPE of 2.66%. On the test set, this optimal model achieves a MAPE of 2.68%. This minimal
generalization error of about 0.02% shows that our method learns a general representation which
is not only a �t to the training data, but also works on previously unseen scenes.

6.5 Ablation Study
6.5.1 Sensitivity Analysis. We study the sensitivity of our approach to di�erent sizes of the embed-
ding dimension " 2 [2, 4, 16, 64, 256, 1024] and the channel assignment methods Grid Position,
Random, Role Position and Role on the validation set, in order to measure their impact on the
approximation error.

Fig. 13 shows the MSE to the left and the MAPE to the right. The experiments were performed the
validation-set over three runs. Here, we report the evaluation for the network when the validation
loss is minimal. The MSE on the left shows errors irrespective of the location of the ground-truth
trajectory. However, a low MAPE does not necessarily follow from a low MSE. The MAPE is a
measure of how relevant the scenes are ranked on average, by comparing the nearest neighbors
in the embedding. Role Position shows best performance followed closely by Random and Role.
We see low variability over repeated runs for each of the assignment methods. For all of them,
performance increases rapidly until " = 16, and then plateaus from " = 64 to " = 1024. In
contrast, the channel assignment by Grid Position shows slightly worse performance with a

(a) MSE over the validation set. (b) MAPE over the validation set.

Fig. 13. Validation-set MSE loss (le�) and MAPE (right) computed on predetermined set of pairs with
increasing embedding dimensionality" for each channel assignment method. The points indicate the median
over three runs. The colored areas correspond to the standard deviation centered around the mean. Note that
the x-axis has a logarithmic scaling.
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higher variability over repeated runs. However, with the larger capacity of" = 1024 it catches up
to the other assignment methods (at the cost of compute time).
The decrease in error with increasing embedding dimension " is expected. With a larger " ,

more scene features can be embedded into the representation. Interestingly, the performance of
most models improves only up to " = 64. We hypothesize that this is due to a lack of model
capacity in the feature extractor. The maximum width of channels during the feature extraction
is 128, the networks learn solely based on these features. Accordingly, embedding sizes greater
than" = 128 use an under-determined projection matrix, i.e., some of the embedding axes linearly
depend on each other and are redundant. Hence, scaling the width of the models could allow models
with large" to improve further.

The channel assignment methods exhibit varying degrees of sparsity and of positional encoding.
The evaluation results for Grid Position, Role Position and Role suggest that sparsity impacts
performance negatively. We next examine the positive impact of our gating mechanism onto sparse
data.

6.5.2 Ablating Gating Mechanism. In this work we introduced a novel gating mechanism for TCNs
for sparse data to address the assignment problem. Here, we investigate the performance bene�ts in
an ablation study. We show di�erences for sparse (channel assignment) inputs through the masking
operation.

Fig. 14. �MAPE wo/ gating over di�er-
ent embedding dimensionalities " 2
[4, 16, 64].

In Fig. 14 we show the di�erences ofMAPE values between
the full and the ablated TCN architecture without gating
mechanism. The sparsest method Role shows clear perfor-
mance degradation compared to the more dense methods
Grid Position, Random and Role Position. The changes
range within 0.3% MAPE, i.e., the expected worsening of
performance due to missing information is more subtle.
The absolute MAPE for Random, Role Position and Grid
Position is slightly below 3% and Role around 3.75%. In
essence, omitting the gating mechanism clearly leads to a de-
creased predictive performance, with the realistic real world
con�guration of" = 64 showing the largest di�erence.

Overall, the e�ect on all sparse channel assignment methods is larger than for the dense Random
assignment, indicating that sparse assignment methods bene�t from information in the masks. We
explain the minimal change for Random due to the complete lack of additional information that
masks encode for it, i.e., every mask value is one. Hence, the performance improvements can be
partially accounted to the increased model capacity from additional mask channels. Interestingly,
the degree of sparsity does not a�ect the e�ect size, as Role bene�ts to a larger extend than does
Grid Position. To summarize, our gating mechanism improves performance in most (useful)
scenarios, likely due to the information encoded through the masks and the increased model
capacity, while the sparse channel assignment methods improve most.

6.5.3 Scene Length. Besides sport scenes of 5 s length for smaller scale analysis, sports scientists
and scouts are also interested in larger strategic movements over longer periods of time. Generally,
for other applications, the complexity of the data varies greatly, e.g., the amount of data per
scene between bird foraging and urban transportation patterns. For these reasons we evaluate our
learning method for longer scenes of 20 s length, which exhibit a larger feature complexity. In our
experiment, we make use of all four assignment methods and use the previously best performing
network architecture but extend the input width and receptive �eld size accordingly. We used a
training set of 10 million scenes.
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Fig. 15. MAPE for 20 s scene length.

The experimental results in Fig. 15 for M = 64 show an
increased absolute approximation error of a MAPE of 6.3%
with Random assignments, and 5.8% for Role Position. This
error increased compared to the previous 3.47% at 5 s scene
length. With respect to the local neighborhood ranking for
20 s scene length, we �nd that the error did not increase sim-
ilarly to MAPE, with very good performance of a top-|MBD1 |

MSRCC of still 0.97, and the �ne granular neighborhood top-
100 ranking MSRCC of 0.69. Also the top-100 ranking score
MIoU is high (0.57). This means that the overall retrieval
accuracy remains almost unchanged. For the longer scenes of 20 s duration, their pair-wise dis-
tances grow larger, and following from that, their neighborhood structure thins out, with neighbors
farther apart from each other. Hence, the absolute approximation error MAPE has less impact on
(local) ranking because absolute pairwise distances are also larger. This shows that our approach is
especially well-suited for more complex data due to its typically larger distances and also due to
the massive savings of computation time.
Moreover, using an estimate of the embedding density we could derive an optimal cluster size

to restrict the search space in a principled way. Instead of directly using the embedding for scene
ranking, computing the exact ground truth distance in a cluster is feasible. Here, MAPE serves as
the expected radius in which most relevant scenes lie.

7 CONCLUSION
We proposed a novel approach to similarity-based scene retrieval of trajectory ensembles that uses
approximations to the assignment problem at much lower computational costs than state of the
art. Using Siamese Networks at its core we learn a low-dimensional representation that preserves
the distance between sample pairs and thus accelerates the search by several orders of magnitude.
The low approximation error allows fast search and subsequent ranking of the closest neighbors,
while leaving the global neighborhood structure almost unchanged. We propose and evaluate four
channel assignment methods, both application agnostic or biased for role-based (sports) trajectories,
and found the hybrid Role Position to work best for the evaluated sports tracking application.

Our experimental results prove that our method learns non-trivial trajectory features like game
play dynamics, and users can select an optimal trade-o� between estimation accuracy and search
speed, depending on the application. Furthermore, the proposed gating mechanism increases
performance for sparse channel encoding.

In conclusion, our approach enables a highly accurate and interactive retrieval of similar scenes.
A trivial extension with a two-step ranking system could additionally incorporate a re�ned second
ranking step of the top-100 retrieved samples, using the exact distance computation on original
sample representations. Furthermore, adapting our framework to applications in similar team sports
like basketball or ice hockey is obvious, especially in datasets of unordered trajectory ensembles.
The method may help the analysis of data from in-store tracking of customer movement by �nding
similar movement patterns. In the medical domain, learning the similarity of parameters of walking
gait only from movement trajectories (specifying a human motion simulator) could bene�t. In radio-
frequency positioning, interference minimization in a changing environment is a hard problem, that
could pro�t from accelerated search of historically similar channel/frequency and sender/receiver
assignments.
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Abstract

Active learning prioritizes the labeling of the most informative data samples. However,
the performance of active learning heuristics depends on both the structure of the underlying
model architecture and the data. We propose IALE1, an imitation learning scheme that
imitates the selection of the best-performing expert heuristic at each stage of the learning
cycle in a batch-mode pool-based setting. We use DAgger to train a transferable policy
on a dataset and later apply it to di↵erent datasets and deep classifier architectures. The
policy reflects on the best choices from multiple expert heuristics given the current state
of the active learning process, and learns to select samples in a complementary way that
unifies the expert strategies. Our experiments on well-known image datasets show that we
outperform state of the art imitation learners and heuristics.

Keywords: active learning, deep neural networks, imitation learning, dataset aggregation,
transferable policy

1. Introduction

The high performance of deep learning on various tasks from computer vision (Voulodimos
et al., 2018) to natural language processing (NLP) (Barrault et al., 2019) also comes with
a few disadvantages. One of the major drawbacks is the large amount of labeled training
data they require. Obtaining such data is expensive and time-consuming and often requires
domain expertise (Lö✏er et al., 2020).

Active Learning (AL) is an iterative process where during every iteration an oracle (e.g.,
a human) is asked to label the most informative unlabeled data sample(s). In pool-based AL
all data samples are available (while most of them are unlabeled). In batch-mode pool-based
AL, we select unlabeled data samples from the pool in acquisition batches greater than
1. Batch-mode AL decreases the number of AL iterations required and makes it easier
for an oracle to label the data samples (Settles, 2009). As a selection criteria we usually
need to quantify how informative a label for a particular sample is. Well-known criteria
include heuristics such as model uncertainty (Gal et al., 2017; Roth and Small, 2006; Wang

1. IALE is pronounced /eIl/.
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and Shang, 2014; Ash et al., 2020), data diversity (Sener and Savarese, 2018), query-by-
committee (Beluch et al., 2018), and expected model change (Settles et al., 2008). As ideally
we label the most informative data samples at each iteration, the performance of a machine
learning model trained on a labeled subset of the available data selected by an AL strategy
is better than that of a model that is trained on a randomly sampled subset of the data.

Besides the above mentioned, in the recent past several other data-driven AL approaches
emerged. Some are modelling the data distributions (Mahapatra et al., 2018; Sinha et al.,
2019; Tonnaer, 2017; Hossain et al., 2018) as a pre-processing step, or similarly use metric-
based meta-learning (Ravi and Larochelle, 2018; Contardo et al., 2017) as a clustering
algorithm. Others focus on the heuristics and predict the best suitable one using a multi-
armed bandits approach (Hsu and Lin, 2015). Recent approaches that use reinforcement
learning (RL) directly learn strategies from data (Woodward and Finn, 2016; Bachman
et al., 2017; Fang et al., 2017). Instead of pre-processing data or dealing with the selection
of a suitable heuristic they aim to learn an optimal selection sequence on a given task.

However, the RL approaches not only require a huge amount of samples they also do not
resort to existing knowledge, such as potentially available AL heuristics. Moreover, training
the RL agents is usually time-consuming as they are trained from scratch. Hence, when only
few labeled training data and a potent algorithmic expert are available imitation learning
(IL) helps. IL trains, i.e., clones, a policy to transfer the expert to the related few data
problem. While IL mitigates some of the aforementioned issues, previous approaches are still
limited (including that of Liu et al. (2018)), e.g., by their limited expressiveness of the state

representations, their computational e�ciencies, their non-arbitrary acquisition sizes, and
their lack of complementary experts. They were also so far only evaluated on NLP tasks.

We propose IALE, that is based on imitation learning and that makes use of a diverse set
of experts from di↵erent heuristic families, i.e., uncertainty, diversity, expected model-change,
and query-by-committee, in a batch-mode AL setting with arbitrary acquisition sizes. Our
policy extends previous work (see Section 2) by learning at which stage of the AL cycle
which of the available strategies performs best, based on a more expressive state, that allows
a powerful introspective view into the classifier model to better assess its confidence. We
use Dataset Aggregation (DAgger) to train a robust and transferable policy and apply it
to other problems from similar domains (see Section 3). We show that we can (1) train a
policy on image datasets such as MNIST, Fashion-MNIST, Kuzushiji-MNIST, Extended
MNIST, CIFAR and SVHN, (2) transfer the policy between them, and (3) even transfer the
policy between di↵erent classifier architectures (see Section 4).

2. Related Work

Next to the AL approaches for traditional ML models (Settles, 2009) also ones applicable to
deep learning have been proposed (Gal et al., 2017; Sener and Savarese, 2018; Beluch et al.,
2018; Settles et al., 2008; Ash et al., 2020). Below we discuss AL strategies that are trained
on data.

Generative Models. Explicitly modeled data distributions capture the informativeness

that can be used to select samples based on diversity. VAAL (Sinha et al., 2019) is a pool-
based semi-supervised AL method, where a discriminator discriminates between labeled
and unlabeled samples using the latent representations of a variational autoencoder. The
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(a) Data distribution (b) Entropy (c) CoreSet (d) Our method

Figure 1: Active learning on two normal distributions in a 2D feature space. Fig. (1a)
shows data and histograms. The remaining plots show labelled and unlabelled data, and
histograms of labelled samples for di↵erent acquisition strategies. We show the state after
training an MLP (two layers with 16 units and ReLU activation) via AL (20 initially labelled
samples, acquiring 10 labels per iteration, 10 times). We present (b) Entropy sampling, (c)
CoreSet sampling, and (d) IALE, that imitates the other two, see Section. 3 for details.

representations are used to pick the most diverse and representative data points (Tonnaer,
2017). Mirza and Osindero (2014) use a conditional generative adversarial network to
generate samples with di↵erent characteristics from which the most informative are selected
using the uncertainty measured by a Bayesian neural network (Kendall and Gal, 2017;
Mahapatra et al., 2018). Such approaches are similar to ours (as they capture dataset
properties) but instead we model the dataset implicitly and infer a selection heuristic via
imitation.

Metric Learning. Metric learners such as the one proposed by Ravi and Larochelle
(2018) use a set of statistics calculated from the clusters of un-/labeled samples in a
Prototypical Network’s (Snell et al., 2017) embedding space, or learn to rank (Li et al.,
2020) large batches. Such statistics use distances (e.g., Euclidean distance) or are otherwise
converted into class probabilities. Two MLPs predict either a quality or diversity query
selection using backpropagation and the REINFORCE gradient (Mnih and Rezende, 2016).
While they rely on statistics over the classifier’s embedding and explicitly learn two strategies
(quality and diversity) we use a richer state and are not constrained to specific strategies.

Meta learning. A similar field is learning-to-learn. Especially optimization-based
meta learning, that aims to improve or discover learning algorithms (Hochreiter et al., 2001),
potentially leads to alternative and fast converging learning algorithms for deep learning
in few data (or few-shot) settings. Methods such as the LSTM Meta Learner (Ravi and
Larochelle, 2017), which uses an LSTM to predict a network’s parameter updates, the
recurrent neural network-based approach by Chen et al. (2017), which learns to optimize
black-box functions within a fixed horizon, and model-agnostic meta-learning (MAML) (Finn
et al., 2017), which produces a well performing parameter initialization for the (task-specific)
di↵erentiating fine-tuning stage, are exemplary approaches. However, not only are these
methods often computationally expensive to train, e.g., due to MAML’s meta-gradient
updates (Nichol et al., 2018). They also to tend to overfit on hard tasks (Jamal and Qi,
2019) or even fail to converge for ambiguous small tasks (Finn et al., 2018). Moreover, we
do not require back-propagation through time (as Ravi and Larochelle (2017) do) with its
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limiting time horizon (Mishra et al., 2018; Chen et al., 2017), but instead rely on gradient
descent in combination with a high capacity state for our learned policy. This allows us to
generalize to nearly arbitrary horizons including larger ones than seen during policy training.

Reinforcement Learning (RL). The AL cycle can be modeled as a sequential decision
making problem. Woodward and Finn (2016) propose a stream-based AL agent based on
memory-augmented neural networks where an LSTM-based agent learns to decide whether
to predict a class label or to query the oracle. Matching Networks (Bachman et al., 2017)
extensions allow for pool-based AL. Fang et al. (2017) use Deep Q-Learning in a stream-based
AL scenario for sentence segmentation. In contrast to them we consider batch-mode AL
with acquisition sizes � 1 and work on a pool-setting instead of a stream-setting. While
Bachman et al. (2017) propose a strategy to extend the RL-based approaches to a pool
setting, they still do not work on batches. Instead, we allow batches of arbitrary acquisition
sizes. Konyushkova et al. (2017) formulate AL as a regression task for a greedy label
acquisition, that predicts the expected reduction of the classification error for each sample,
and that is trained on either synthetic or real data. They use a Random Forest classifier,
with features like predicted probability and forest variance, for binary classification and
batch-sizes of one. Follow-up work (Konyushkova et al., 2018) replaces the greedy approach
with a Q-Learning-based RL agent. Casanova et al. (2020) propose a DQN-based extension
of Konyushkova et al. (2018)’s method, that learns to sample image regions for a semantic
image segmentation task, focusing on classes that are underrepresented in the training
dataset. Their work is specifically aimed at selecting relevant regions in images to optimize
the classes’ mean intersection of union. Our work focuses on di↵erent problems for learning
AL, as we investigate useful sample relevance features for AL especially from deep neural
networks, learn a unified AL heuristic from existing experts, and investigate the transfer of
the policy between real datasets of multi-class problems with larger batch-sizes, on more
complex datasets and transfers between classifier architectures. Fan et al. (2018) propose a
meta-learning approach that trains a student-teacher pair via RL. The teacher optimizes
data teaching by selecting labeled samples that let the student learn faster. In contrast, our
method learns to selects samples from an unlabeled pool, i.e., in a missing target scenario.
The teacher-student analogy is similar to our approach, however, the objective, method and
available (meta-)data to learn a good teacher (policy) are considerably di↵erent.

Multi-armed Bandit (MAB). Baram et al. (2004) treat the online selection of AL
heuristics from an ensemble as the choice in a multi-armed bandit problem. COMB uses the
known EXP4 algorithm to solve it, and ranks AL heuristics according to a semi-supervised
maximum entropy criterion (Classification Entropy Maximization) over the samples in the
pool. Building on this, Hsu and Lin (2015) learn to select an AL strategy for an SVM-
classifier and use importance-weighted accuracy extension to EXP4 that better estimates the
performance of each AL heuristic improvement as an unbiased estimator for the test accuracy.
Furthermore, they reformulate the MAB setting so that the heuristics are treated as the
bandits where the algorithm selects the one with the largest performance improvement (in
contrast to COMB’s formulation where the unlabeled samples are treated as bandits). Chu
and Lin (2016) extend Hsu and Lin (2015) to a setting where the selection of AL heuristics is
based on a linear weighting, aggregating experience over multiple datasets. They adapt the
semi-supervised reward scheme from Hsu and Lin (2015) to work with their deterministic
queries. Instead of selecting from a set of available heuristics, we propose the learning of a
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unified AL policy. This allows our policy model to learn an interpolation between batches of
samples proposed by single heuristics also exploiting the deep network classifier’s internal
state.

Imitation Learning (IL). Imitation learning methods such as DAgger (Ross et al.,
2011) can also be used to train an AL policy. For instance, Liu et al. (2018) propose a
follow-the-leader approach that selects samples that improve classifier accuracy. During
policy training they roll out a few possible acquisitions (using a small random pool subset)
and retrain the classifier on each sample independently to infer preference scores. However,
this not only leads to sub-optimal selections, it also requires an expensive re-training per
sample in the roll-out. In contrast to them, we explore an alternative way for using IL,
as IALE imitates an ensemble of a wide variety of AL heuristics to learn a unified AL
strategy. Our state consists of novel features for introspection, such as gradients inferred
from proxy-labels, as similarily proposed by Ash et al. (2020). Hence, IALE is well suited for
deep learning (e�cient inference, fast convergence), even compared to classical AL baselines.

3. IALE: Imitating Active Learner Ensembles

IALE learns an AL sampling strategy from multiple experts in a pool-based setting by imitating
their behavior. We train a policy with data consisting of states (that encode, e.g., labeled and
unlabeled sample distributions, uncertainty, and gradient signals) and best expert actions
(i.e., samples selected for labeling) collected over the AL cycles. Hence, our policy learns
with options, where each expert’s (potentially sub-optimal) selection is an option it may
choose to learn, according to their rank. Analogously, our approach is similar to a distillation
of the experts. The policy is then applied on a di↵erent task. To discover states that are
unlikely to be produced by the experts, DAgger (Ross et al., 2011) balances exploration
(via the current policy) and exploitation (via the AL experts) to collect a large set of states
and actions. We train the policy network on all the previous states and actions after each
AL iteration.

3.1 Background

In pool-based AL we train a model M on a dataset D by iteratively labeling data samples.
Initially, M is trained on a small amount of labeled data Dlab randomly sampled from
the dataset. The rest of the data is considered as the unlabeled data pool Dpool, i.e.,
D = Dlab [ Dpool. From that point onwards during the AL iterations a subset of Dsel is
selected from Dpool by using an acquisition function a(M,Dpool). The data is labeled and
then removed from Dpool and added to Dlab. The size of Dsel is based on the acquisition size
acq (>1 for batch-mode AL). The AL cycle continues until a labeling budget of B is reached.
M is retrained after each acquisition to evaluate the performance boost with respect to the
increased labeled dataset only (and not the additional training time).

The acquisition function a uses heuristics on the trained model M to select the most
informative data samples from Dpool. For deep AL those include uncertainty-based MC-

Dropout (Gal et al., 2017), query-by-committee-based Ensembles (Beluch et al., 2018), data
diversity-based CoreSet (Sener and Savarese, 2018), gradient-based BADGE (Ash et al.,
2020), and soft-max-based Confidence- or Entropy-sampling (Wang and Shang, 2014).
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Figure 2: Training ⇡ to imitate experts E : (1) we pass samples from Dsub and Dlab through
the current classifier M ; (2) the embeddings and the predictions are input to ⇡, whose output
vector is compared with the target vector predicted by the best expert; (3) we calculate a
loss and back-propagate the error through ⇡; (4) we extend the labeled pool data Dlab by
Dsel and retrain M .

MC-Dropout uses a Monte-Carlo inference scheme based on a dropout layer to approximate
the model’s predictive uncertainty (Gal and Ghahramani, 2016) and then uses these values
to select the most uncertain samples (Gal et al., 2017). Ensembles (Beluch et al., 2018)
model predictive uncertainty using a committee of N classifiers, initialized with di↵erent
random seeds. However, while at inference time we need to run only N forward-passes per
sample (compared to MC-Dropout performing two dozens or more Monte-Carlo passes), the
training of N -1 additional deep models can become prohibitively expensive in many use-cases.
CoreSet (Sener and Savarese, 2018) aims to select diverse samples by solving the k-centers
problem on the classifier’s embeddings. This involves minimizing the distance between
each of the unlabeled data samples to its nearest labeled samples. BADGE determines
the magnitudes of the gradients in a batch using proxy-labels and selects samples by
uncertainty and diversity. Soft-max-based heuristics (Confidence- and Entropy-sampling)
use predictive uncertainty and are computationally lightweight at lower AL performance (Gal
and Ghahramani, 2016; Ash et al., 2020). Confidence selects the samples with the lowest
class probability and Entropy the ones with largest entropy of their probability distribution.

3.2 Learning Multiple Experts

Instead of using specific heuristics we propose to learn the acquisition function using a policy
network. Once the policy is trained on a source dataset, it has learned a unified active
learning heuristic, and can be applied to di↵erent target datasets.

Figure 1 illustrates the approach with two-dimensional Gaussian distributions. After
ten acquisitions of ten new samples each strategy has sampled a distinct set of labeled data.
While uncertainty-based Entropy mostly samples from only one class, the diversity-based
CoreSet covers a more representative set over the data and selects data from the whole
distribution. Our approach was trained to imitate both methods. Figure 1d shows that it
acquired diverse samples (in this example at a ratio of 60 to 40), and samples especially
along the decision boundary, reaching higher accuracy than any of the single baselines alone.
The learned strategy hence combines the advantages of both imitated methods.

Figure 2 sketches the imitation learning framework. The policy network ⇡ is a Multi-
Layer Perceptron (MLP) trained to predict the usefulness of labeling samples from the
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unlabeled data pool Dpool for training the model M , similar to an AL acquisition function.
As input the policy network takes the current state, that encodes, e.g., M ’s information on
learned representations Me(x) and Me(Dlab), as well as its predictive uncertainty derived
from M(x), M(Dlab), and label information from Dlab. We use the predictions M(x) to
enrich the state with pseudo-label gradient signals to guide the policy’s decisions later
on2. Our state representation significantly extends previous work (Contardo et al., 2017;
Konyushkova et al., 2017; Liu et al., 2018; Casanova et al., 2020) and adds novel features
that allow for model introspection. The policy ⇡ then outputs the action to be taken at
each step. Action here refers to an AL acquisition, i.e., which of the unlabeled data samples
should be labeled and added to the training data. ⇡ learns the best actions from a set
of experts E which predict the best actions for a given AL state, and thus learns its own
complementary strategy. A subset of the pool dataset Dsub with size n is used instead of the
whole pool dataset at each active learning iteration for training the policy.

States. As ⇡ uses the state information to make decisions, a state s should be maximally
compact but still unique, i.e., di↵erent situations should have a di↵erent state encoding, and
they have to allow to predict M ’s expected improvement. Our state encoding uses three
types of information: (1) M ’s learned representations, (2) M ’s predictive uncertainty, and
(3) M ’s gradient signals for unlabeled samples. We distinguish the state’s parameters as
either derived from the labeled or from the unlabeled pool. Together, these parameters form
a minimal but comprehensive description of a model’s state at each step of the AL-cycle.

For labeled samples the following parameters encode M ’s learned representations and
predictive uncertainty :

• The embedded samples’ mean µ
�
Me(Dlab)

�
: the embedding Me of a sample by M

is the output of the final layer (i.e., the layer before the soft-max layer in case of
classification), see Figure 2. The size of this representation is independent of the
(growing) size of Dlab and thus will not become a computational bottle-neck.

• The ground-truth empirical distribution of class labels

~eDlab = (

P
y2Dlab

1[y==0]

|Dlab|
, ..,

P
y2Dlab

1[y==i]

|Dlab|
),

which is a normalized vector of length i, i.e., the number of classes, with percentage of
occurrence per class using the labels of the already acquired data samples.

• M ’s predicted distribution of class labels for the labeled data ~eM(Dlab), i.e., a normalized
vector as before but with predicted class labels instead of ground-truth.

We encode the predictive uncertainty by including both the ground truth and the predicted
empirical distribution. The policy can base its decisions on the model M ’s prediction errors,
e.g., by detecting wrong predictions of already labeled samples and decide to acquire more
similar samples.

For unlabeled samples (n data samples in Dsub), we encode the information that is
necessary to help ⇡ acquire more relevant samples. First, we calculate M ’s representation
for each data sample xi 2 Dsub, i.e., its embedding Me(xi) in the same embedding space as

2. see Eq. 1 for an exact definition of the state.
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the already labeled samples. Second, we also predict each sample’s label M(xi). Finally, we
encode gradient signals as the gradients of unlabeled data provide a powerful view due to
its e↵ect on the classifier model (as they encode M ’s expected change directed towards the
steepest learning steps). Although their calculation usually requires labeled samples we can
still approximate them using proxy-labels (Ash et al., 2020). We define a proxy-label ŷ (i.e.,
the one that has the highest class probability for M(xi)). Then, the gradient’s magnitude
and direction at the embedding layer describes the model’s uncertainty and its expected
change. We thus capture gradient information at the embedding layer as g(Me(xi)) and
encode it as part of the state.

In summary, the state enables the policy to learn to select samples (1) where the model
is uncertain (i.e., where it predicts the wrong labels), (2) where the model might gain most
information (i.e., the gradient’s magnitude is large), and (3) to learn to select samples that
increase the labeled pool’s diversity (i.e., to acquire less well-represented samples, using the
label statistics and the learned representations). Hence, we describe a state s as follows:

s :=
h
µ(Me(Dlab)),~eDlab ,~eM(Dlab),

2

64
Me(x0)

...
Me(xn)

3

75 ,

2

64
M(x0)

...
M(xn)

3

75 ,

2

64
g(Me(x0))

...
g(Me(xn))

3

75
i

(1)

Actions. In our approach, actions are essentially the resulting selections from acquisition
functions, that ⇡ learns to imitate. The ground truth actions (selections) provided by the
experts are binary vectors of length k, where a 1 at index i means that xi should be
selected for labeling. We may think of the experts are policies themselves that only have a
fixed acquisition function. IALE’s acquisition function, on the other hand, uses its neural
network’s prediction to select samples. The output of the MLP is analogously a vector with
a desirability score ⇢i for each unlabeled sample from Dsub, i.e., ⇢i := ⇡(si), from which we
choose the highest ranked samples. This results in a binary selection vector ~v = (⇢0, · · · , ⇢n)
with

Pn
i=0 ~vi = acq. We use a binary cross entropy loss to update ⇡’s weights:

L(⇢,~t) = �
nX

i=0

~ti log (⇢i)� (1� ~ti) log (1� ⇢i), (2)

where ~t is the target vector provided by the best expert (similar to a greedy multi-armed
bandit approach (Hsu and Lin, 2015)), guiding ⇡ towards the best expert’s suggestion.

Our IL-based approach uses the experts to turn AL into a supervised learning problem,
i.e., the action of the best expert becomes the label for the current state s. From all the
experts E we determine the best one by letting all of them select samples for labeling,
and then rank their performance using temporary models trained for each expert. Our
choice of AL heuristics for the set of experts E includes particular types but is arbitrarily
extendable. Using MC-Dropout, Ensemble, CoreSet, BADGE, Confidence or Entropy allows
us to only minimally modify the classifier model M , e.g., we add dropout at inference to use
MC-Dropout. ⇡ aims to learn certain derived properties from s, such as model uncertainty.

Our hypothesis is that ⇡ imitates the best suitable heuristic for each phase of the AL
cycle, i.e., starting with relying on one type of heuristics for selections of samples in the
beginning and later using a di↵erent one for fine-tuning M . (see also Section 4.3). This is in

8



Imitating Active Learner Ensembles

Algorithm 1 Imitating Active Learner Ensembles
1: data D, labeled validation data Dval, classifier M , budget B, experts E , acquisition

size acq, subset size n, probability p, states S, actions A, random policy ⇡ (acq � 1,
n = 100).

2: for e = 1 . . . episodesmax do

3: Dlab,Dpool  split(D)
4: repeat

5: M  initAndTrain(M,Dlab)
6: Dsub  sample(Dpool, n)
7: e⇤  bestExpert(E ,M,Dsub,Dval)
8: Dsel  e⇤.SelectQuery(M,Dsub, acq)
9: S,A toState(M,Dsub,Dlab), toAction(Dsel)

10: if Rnd(0, 1) � p then

11: // We may choose ⇡’s selection
12: Dsel  ⇡.SelectQuery(M,Dsub, acq)
13: end if

14: Dlab  Dlab [Dsel

15: Dpool  Dpool \ Dsel

16: Update policy using {S,A}
17: until |Dlab| > B
18: end for

line with previous research that combines uncertainty- and density-based heuristics and that
learns an adaptive combination framework that weights them over the training course (Li
and Guo, 2013). ⇡ learns a more suitable selection for the classifier’s learning stage through
introspection into the classifier’s state. Note that this is more adaptive to new problems
than e.g. encoding time directly (for instance as a function of the number of acquisitions).

3.3 Policy Training

Our policy training builds on the intuition behind DAgger, which is a well-known algorithm
for IL that aims to train a policy by iteratively growing a dataset for supervised learning.
The key idea is that the dataset includes the states that are likely to be visited over the
course of solving a problem (in other words, those state and action encodings that would
have been visited if we would follow a hard-coded AL strategy). To this end, it is common
when using DAgger to determine a policy’s next state by either following the current policy
or an available expert (Ross et al., 2011). We thus grow a list of state and action pairs, and
randomly either choose expert or policy selections as the action.

Each episode of the IL cycle lasts until the AL labeling budget is reached for episodesmax

iterations. We aggregate the states and actions over all episodes, and continually train the
policy on the pairs. We use DAgger to further randomize the exploration of D. Instead of
always following the best expert’s advice, we randomly follow the policy’s prediction, and
thus enrich the possible states.

Our IL approach for training ⇡ is given in Algorithm 1. At each AL cycle, we randomly
sample a subset Dsub of n samples from the unlabeled pool Dpool (line 3). We find the best
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expert e⇤ from a set of experts E (line 7) by extending the training dataset by the expert
selections (from Dsub) and train a classifier each. This means that each expert constructs one
batch according to its heuristic, e.g., a batch composition could maximize model-change, and
queries the oracle for labels. We choose the best expert by comparing the resulting classifiers’
accuracies on the labeled validation dataset. We next set its acquisition as this iteration’s
chosen target and store state and action for the policy training (line 9). Depending on the
probability p (line 10) we then either use the policy or the best expert to increase Dlab for
the next iteration (line 14). After each episode we retrain ⇡ on the state and action pairs
(line 16).

4. Experiments

We first describe our experimental setup (Section 4.1). Next, we describe how we trained
our policy on MNIST (Section 4.2) and evaluate our approach by transferring it to test
datasets, i.e., to FMNIST and KMNIST (Section 4.3), and Extended MNIST, SVHN
and CIFAR-10/-100 (Section 4.4). We end with a discussion of ablation studies and
the limitations of our approach (Section 4.5). The source code is available at https:

//github.com/crispchris/IALE and can be used to reproduce our experimental results.

4.1 Experimental Setup

Datasets. We use the image classification datasets MNIST (LeCun et al., 1998), Fashion-
MNIST (FMNIST) (Xiao et al., 2017), Kuzushiji-MNIST (KMNIST) (Clanuwat et al.,
2018), Extended MNIST (Cohen et al., 2017), CIFAR-10/-100 (Krizhevsky, 2009), and
SVHN (Netzer et al., 2011) for our evaluation. The MNIST-variants consist of 70, 000
grey-scale images (28⇥28px) in total for 10 classes. MNIST contains the handwritten
digits 0 � 9, FMNIST contains images of clothing (i.e., bags, shoes, etc.), and KMNIST
consists of Hiragana characters. Extended MNIST contains, among others, a 26-class split of
handwritten letters (28⇥28px) with 145,600 samples. SVHN, CIFAR-10 and CIFAR-100 are
higher dimensional image classification datasets (32⇥ 32 pixels, 3 color channels) with 10,
or 100 classes. The CIFAR-variants contain 60.000 images of objects and animals. SVHN
contains 600.000 images of house numbers.

To evaluate IALE we train a policy ⇡, run it on unseen datasets along with the baselines,
and average the results (over 3 iterations). We denote the number of labeled samples in
the experiments as labeling e↵ort until a budget is reached, to be able to compare di↵erent
acquisition sizes for the same total budget. The similarity between FMNIST and MNIST
(that has previously been shown (Nalisnick et al., 2019)) and the di�culty of FMNIST
(it has been shown to be a demanding dataset for AL methods (Hahn et al., 2019)) make
these datasets a perfect combination to evaluate IALE. We show broader generalization on
Extended MNIST and the higher dimensional SVHN and CIFAR datasets (5 repetitions).
Appendix A.3.2 presents additional results for transferring ⇡.

Architectures of classifier M . We use the same CNN architecture that has been
employed in previous research (Gal and Ghahramani, 2016). Our model has two convolutional
layers, followed by a max pooling and dense layer. We add dropout layers after the convolution
and dense layers and use ReLU activations. A soft-max layer allows for classification. We
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(a) CNN/MNIST (b) CNN/Fashion-MNIST (c) CNN/Kuzushiji-MNIST

Figure 3: Active learning performance of the trained policy (trained on MNIST), compared
to the baseline approaches including ALIL (Liu et al., 2018), validated on MNIST and
evaluated on FMNIST and KMNIST.

also provide results for using ⇡ on a simple MLP and on a more complex ResNet-18 (He
et al., 2016), and supplemental results in Appendix A.3.1.

Architecture of policy ⇡. Our policy model ⇡ uses an MLP with three dense layers
with 128 neurons each. The first two dense layers are followed by a ReLU activation layer,
whereas the final layer has only one neuron and the output of this layer is passed onto a
sigmoid function to constrain the outputs to the range [0, 1]. and to further process it into
an aggregating top-k operation.

Baselines. We compare our method with di↵erent well-known AL approaches from
literature: ALIL (which we adapted from Liu et al. (2018) to work with image classification
tasks), MC-Dropout, Ensemble, CoreSet, BADGE, Confidence-sampling, Entropy-sampling
and a random sampling. Appendix A.1.1 provides a more details on the baselines.

Notation. We denote the unlabeled dataset as Dpool, the already labeled data as Dlab

and a labeled validation data Dval. We randomly sub-sample Dsub of size n from Dpool. We
use a budget B and acquisition size acq to select Dsel from Dsub. We derive the state S
from a classifier M , e.g., a CNN or ResNet, to train IALE’s policy network ⇡, i.e., an MLP
with two hidden layers. In policy training, experts E propose actions A. DAgger’s hyper
parameter p is the probability for following either the best expert or the policy ⇡ itself.

4.2 Policy Training and Validation

We use the MNIST dataset as our source dataset on which we train our policy for 100
episodes, with each episode containing data from an AL cycle. The initial amount of labeled
training data is 20 samples (class-balanced). At each step of the active learning process, 10
samples are labeled and added to the training data until a labeling budget B of 1, 000 is
reached. We use the AL heuristics MC-Dropout, Ensemble, CoreSet, BADGE, Confidence
and Entropy as experts, and use Dval with 100 labeled samples to score the acquisitions of
the experts. The pool dataset is sampled with n = 100 at each AL iteration. We choose
p = 0.5 for means of comparison with the baselines (based on preliminary experiments, see
Appendix A.2.1 on Exploration-Exploitation). We train the policy’s MLP on the growing
list of state and action pairs using the binary cross entropy loss from Equation 2 and use
the Adam optimizer (Kingma and Ba, 2015) for 30 epochs with a learning rate of 10�3,
�1 = 0.9, �2 = 0.999, ✏=10�8, without any weight decay.
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Figure 3a shows the results of our method in comparison to all the baseline approaches
on MNIST, on which the policy was trained on. Our method consistently outperforms or is
at least en par (towards the end, when enough representatives samples are labeled) with all
the other methods. This finding on the policy-training dataset is not surprising, however,
IALE performs better acquisitions than, e.g., Ensemble and MC-Dropout, for the important
first half of the labeling budget, where it matters the most. In this experimental setting,
Confidence-sampling performs similarly to the two more complex methods, even though it
uses only the simple soft-max probabilities. While Entropy beats random sampling, it is still
not competitive. BADGE performs similar to random sampling, which is due to the small
acquisition size of 10 (the better performance of BADGE was reported with much larger
acquisition sizes of 100 to 10,000 in Ash et al. (2020) as its mix of uncertainty and diversity
heuristic benefits from these). The same applies to CoreSet, however, here it performs worst
on average over all experiments. This finding is in line with previous research (Sinha et al.,
2019; Hahn et al., 2019) and can be attributed to a weakness of the used p-norm distance
metric regarding high-dimensional data, called the distance concentration phenomenon. The
accuracy of ALIL on MNIST is similarly low as CoreSet. Moreover, ALIL is designed to add
only one sample to the training data at a time (no batch-mode).

A general finding regarding computational e�ciency in active learning is that IALE is
faster than most baselines. While MC-Dropout requires 20 forward passes to decide which
samples it acquires, and Ensembles N = 5 forward passes, one for each model, our approach
requires only 2 inferences (for Dsub and Dlab). The support for batch-mode (instead of
selecting single samples) and using expert heuristics’ batch acquisitions (instead of rolling out
training of random samples from a small subset), accelerates the training of IALE compared
to ALIL by several orders of magnitude (6 minutes versus 215 minutes per epoch on one
NVidia Tesla V100 GPU). In a quantitative evaluation (with a labeling budget of 10.000
samples, an acquisition size of 10, training a ResNet-18 for 100 epochs, same GPU as before)
the run time for IALE is 10:17:31 (hh:mm:ss) vs. 9:45:12 for random sampling. Compared to
49:15:23 for Ensembles, 14:23:18 for MC-Dropout and 11:58:47 for BADGE, this shows that
IALE is faster. Only two baselines Conf (10:12:01) and Entropy (10:05:21) run faster, but
they perform worse than IALE and even worse than random sampling.

4.3 Policy Transfer and Testing

To evaluate ⇡’s performance, we have to run it on a di↵erent dataset than the one that
it has been trained on. Hence, we train ⇡ on the source dataset MNIST as in Section 4.2
and use it for the AL problem on FMNIST and KMNIST. We use an initial class-balanced
labeled training dataset of 20 samples and add 10 samples per AL acquisition cycle until we
reach a labeling budget of 1,000 samples. All the baselines are evaluated along with our
method for comparison.

Figures 3b and 3c show the performance of IALE along with the baselines on FMNIST
and KMNIST. Still, IALE consistently outperforms the baselines on both datasets. We
can see that it learns a combined and improved policy that outperforms the individual
experts consistently and (sometimes) even with large margins. On FMNIST IALE is the
only method that actually beats a random sampling (similar findings have previously been
reported by Hahn et al. (2019)). IALE is consistently 1� 3% better than random sampling
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(a) Uncertain and diverse. (b) Types of uncertainty.

Figure 4: Complementary acquisition.

on FMNIST, on the harder KMNIST dataset IALE is even 7� 9% ahead. The baselines give
a mixed picture. ALIL’s performance is not competitive on any task and actually never
beats a random sampling strategy. We also see unstable performance for MC-Dropout and
Ensemble, that generally perform similarly well. The simple soft-max heuristics Entropy
and Confidence fail on FMNIST. CoreSet lags far behind, especially on KMNIST. BADGE

always performs like random sampling, due to the aforementioned problematic acquisition
size.

Sample composition of acquisition batches. We compare IALE’s chosen samples
with the ones chosen by the experts, to gain insights on what IALE imitates and how the
composition changes over the AL cycles. We evaluate all baseline experts and our method 5
times for 100 AL cycles on FMNIST (|Dsub| = 100 and acq-size= 10), and report the results
as well as fitted polynomials to highlight trends. In addition, we report the intersection
of two i.i.d. randomly selected sets as the Random baseline with 1% overlap. For an
acquisition size of 50, such a random overlap increases to 25%. Since the acquisitions
between imitated baselines overlap, we are especially interested in their complementary
acquisitions, e.g., samples that were only selected by a specific heuristic. Hence, we first
separate AL into the families of uncertainty- and diversity-based methods. We group
ensemble model combinations (EMCs) (Lakshminarayanan et al., 2017) (Ensemble, MC-

Dropout) with single model soft-max methods (Confidence, Entropy), and compare with
methods with diversity (BADGE and CoreSet). The results in Figure 4a show that the
policy predominantly overlaps with uncertainty-based baselines. As Figure 4b shows, the
exclusively by EMCs selected samples form the larger set. IALE may outperform any single
heuristic due to its complementary strategy. The overlap between ⇡ and any other heuristic
(intersection), decreases from about 80% to 60% over time. ⇡ selects samples that none of the
experts choose, see Appendix A.2.2, where we also show ⇡’s overlap with single heuristics.

4.4 Policy Generalization

IALE learns a transferable AL policy. It unifies heuristics and generalizes over tasks and
model architectures, because the state retains its formulation between tasks and architectures.
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(a) MLP/Fashion-MNIST. (b) CNN/Fashion-MNIST.

Figure 5: (a) ⇡ (trained on CNN and MNIST) applied to MLP on FMNIST (b) ⇡ (trained
on ResNet-18 and MNIST) applied to CNN on FMNIST.

In this section, we evaluate the extend and limitations of the policy for transfers between
MLP, CNN and ResNet classifiers, and on increasingly complex image datasets.3

Architecture transfer. Here, we explore the transfer of our approach to di↵erent
architectures. We apply a policy, trained on CNN and MNIST, to an MLP (two hidden
layers, 128 units, ReLU activation) on FMNIST and show the results in Figure 5a. Even
with 5 random seeds and an increase batch size of 20 IALE, BADGE and Ensemble train
classifiers stably, with IALE being on top. Next, we train a second policy on ResNet-18 and
MNIST (IALE ResNet). We apply it to a CNN model on the FMNIST dataset and compare
also with the previous policy (IALE CNN on MNIST). The results in Figure 5b show that
both variants perform similarly despite their di↵erent policy training contexts. A potential
explanation is that the policy learned similar decision strategies for both types (and sizes)
of convolutional networks. This also shows that the state s and policy ⇡ are well-matched.
First, the state s is rich enough for the policy ⇡ to learn and decode relevant information
for generalizing the AL task. Second, the policy has a high enough capacity for transferring
the policy to di↵erent networks and tasks, even though the embedding size itself is fixed.4

Both transfer experiments show IALE’s general ability to learn a model-agnostic AL
strategy, of course within this experiment’s scope. Experiments with deeper networks or an
explanatory analysis of the policy’s decision rules and state remain as future work.

Higher-dimensional data. Next, we evaluate IALE on the higher-dimensional CIFAR-
10 and SVHN. For the latter, we increase the batch- or acquisition size to 1, 000 so that
training converges. We re-use the two policies (CNN/MNIST and ResNet/MNIST) from the
previous experiment, but train exclusively ResNet-18 classifiers, because the simpler classifier
models (MLP, CNN) did not yield satisfying results for any AL strategy. In summary, we use
2, 000 initial labels, an acq-size of 10 and B = 10, 000 for CIFAR-10 and 1, 000 initial labels,
an acq-size of 1, 000 and B = 16, 000 for SVHN. Figure 6a shows all results on CIFAR-10

3. The transfer of the two di↵erent ⇡’s works because the shape of the classifier’s embedding is invariant to

architecture and data.

4. While the size of the embedding of the training and test architectures need to match exactly, it is only

one aspect of the proposed approach besides the full state and the policy’s network. Specifically, given

an embedding of su�cient size we can construct an adequate state for good generalization from that

embedding and other information, i.e., predictive uncertainty and gradient information. Our approach

does not only rely on the embedding and the constructed state. Instead, the policy network itself has a

large capacity and decodes the state.
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(a) ResNet/CIFAR-10. (b) ResNet/SVHN.

Figure 6: (a) ⇡ (trained on CNN (IALE CNN) or ResNet-18 (IALE ResNet) on MNIST)
applied to ResNet-18 on CIFAR-10 (filtered). (b) ⇡ (trained on CNN and MNIST) applied
to ResNet-18 on SVHN (filtered).

(a) CNN/Extended MNIST (let-
ters).

(b) ResNet/CIFAR-100.

Figure 7: (a) ⇡ (trained on CNN and MNIST) applied to CNN on Extended MNIST (letters).
(b) similarly on CIFAR-100 (filtered).

with di↵erent policies: IALE is at least on par or better than a random sampling while the
other experts are on par or worse than random sampling, some of them considerably. On
SVHN, the performance gap opens wider with a larger batch-size (Figure 6b). Here, IALE
performs best and is the only AL method that consistently beats a random sampling, with a
relatively large margin. Furthermore, we want to emphasize that IALE generalizes beyond
its budget of 1, 000 during policy training to longer time horizons of budgets like 10, 000
or even 16, 000. This is a benefit of our policy’s introspective, state-based learning over
alternatives like optimization-based meta-learning (Ravi and Larochelle, 2017; Chen et al.,
2017), that struggles with longer time horizons as shown by Mishra et al. (2018) and Chen
et al. (2017). Finally, these results show, that our framework learns a task-agnostic AL
strategy for the presented image datasets. See Appendix A.3.2 for raw results.

Arbitrary class count. We perform experiments on Extended MNIST (26 classes;
letters) and CIFAR-100 (100 classes) to increase the complexity of the classification task. To
do this we must remove the fixed-length vectors prediction and empirical class distribution

from the policy’s state. Even though this may lead to a slightly poorer performance (see
Appendix A.4.3) this allows transfers to tasks with an arbitrary numbers of classes. To start,
we train two new policies with the reduced state, one with CNN on MNIST and another
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(a) Experts. (b) Varying acquisition sizes. (c) Varying |Dsub|.

Figure 8: Ablation studies on IALE for (a) di↵erent expert sets (on KMNIST), (b) acq-sizes
and (c) n=|Dsub| (on MNIST).

with a ResNet-18 on CIFAR-10. Then, we apply IALE to a CNN on the Extended MNIST
dataset.

Figure 7a shows the results from which we can draw two important observations: (1)
IALE can be applied to problems with arbitrary class count, and (2) IALE still performs well
compared to baselines. Next, we explore the limits by applying both policies to ResNet-18 on
CIFAR-100 (1, 000 initial labels, an acq-size of 1, 000 and B = 19, 000). Figure 7b shows that
while IALE is still on par or better than the baselines, random sampling works surprisingly
well, and shows the limitations of current AL heuristics, leaving space for future research.

4.5 Ablation Studies

Varying experts. To investigate the influence of experts, we leave out some types of
experts: We categorize them into 4 simple groups, i.e., EMCs (McdropEns), soft-max
uncertainty (EntrConf ), diversity (Coreset) and hybrid (Badge), and leave one subset out.
We fully train each method on MNIST with B = 1, 000 and an acquisition size of 10, and
present the results of the evaluation on KMNIST in Figure 8a (more results including the
ablation of state elements can be found in Appendixes A.4.2 and A.4.3). We see that most
combinations perform well compared to the baselines. However, leaving out uncertainty-based
heuristics can decrease performance, as they contribute the largest fraction to IALE’s selection
composition (see Section 4.3). Even though training time is longer with MC-Dropout, the
gains in performance can be worth it. In contrast, the soft-max uncertainty-based heuristics
are computationally cheap and yield well-performing policies.

Hyperparameters. Two important parameters are the acquisition size acq and the
size of Dsub. Machine learning engineers may specifically be interested in modifying the
acquisition size according to practical constraints. Hence, we show that arbitrary values
are possible when applying ⇡. Figures 8b and 8c show results for applying the policy for
acq of 1 to 40 and size of Dsub between n=10 and n=10, 000. During policy training we
fixed acq= 10 and size of Dsub to n=100. This section also addresses the question of how
IALE learns to sample diverse sets of points. Our empirical study shows that it does not
sample non-diverse sets, which could be a failure state. Varying the acquisition size and
Dsub produces the following insights. As expected, IALE performs best at acq= 1 and worst
at acq= 40, if n is unchanged (because n limits the available choices), e.g., bad samples
are chosen. Increasing n to 1, 000 alleviates this. However, there is an upper limit to the
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size of Dsub after which performance deteriorates again, see Figure 8c. We believe that
random sub-sampling simplifies the selection of diverse, uncertain samples. The performance
decrease for small and large n supports this hypothesis. An optimal size of the sub-sampled
data could be determined for di↵erent active learners, similarly to how some acquisition sizes
are more suitable than others (see diversity vs. uncertainty in Appendix A.4). However,
this additional interesting finding is not investigated further within this paper. The lower
limit becomes apparent again when n is smaller than 10 times acq, with n =acq essentially
being a random sampling. From our observations, n should be 10� 100 times acq (for 10
classes). From the small di↵erences within this value range, it is suggested that our method
is suitable for larger acquisition sizes for batch-mode AL, as its performance is not a↵ected
much.

5. Conclusion

We proposed a novel imitation learning approach for active learning. Our method learns
to imitate the behavior of di↵erent active learners, such as uncertainty-, diversity-, model
change- and query-by-committee-based heuristics, on one initial dataset and model, and
transfers the obtained knowledge to work on other datasets and models (that share an
embedding space). Our policy ⇡ is a simple MLP that learns a unified strategy from the
experts based on a state with high capacity that contains gradient signals, embeddings and
statistics of the data. Our experiments on di↵erent image datasets (four MNIST variants,
CIFAR-10/100, SVHN) and model architectures (MLP, CNN, ResNet) show that IALE

outperforms the state of the art and learned a complementary strategy. An ablation study
and analysis of the influence of certain hyper-parameters also shows the limitations of our
approach.

Future work investigates alternatives to the sampling step, as it may lead to sub-optimal
choices from very large or imbalanced datasets. This would require a di↵erent loss than
cross-entropy, in order to retain the ordering information, and could lead to a reformulation
as a learning-to-rank problem of (compatible) experts’ choices instead. Finally, an analysis of
how ⇡’s state enables a transfer of its active learning strategy between classifier architectures
and datasets may lead to some level of explanation of the principles of deep active learning.

Acknowledgments

We would like to acknowledge support for this project from the Bavarian Ministry of
Economic A↵airs, Infrastructure, Energy and Technology as part of the Bavarian project
Leistungszentrum Elektroniksysteme (LZE) and the Center for Analytics-Data-Applications
(ADA-Center) within the framework of “BAYERN DIGITAL II”.

17



Löffler and Mutschler

Appendix A.

In this section we provide an extension of the experiments section (Section 4) and feature
additional results that support a more complete evaluation of IALE. We adhere to the same
section structure.

A.1 Experimental Setup

A.1.1 Baselines

In the following is a short explanation of the baselines and experts that we used in our
experiments:

1. Random Sampling randomly samples data points from the unlabeled pool.

2. MC-Dropout (Gal et al., 2017) approximates the sample uncertainty of the model by
repeatedly computing inferences of the sample, i.e., 20 times, with dropout enabled in
the classification model.

3. Ensemble (Beluch et al., 2018) trains an ensemble of 5 classifiers with di↵erent weight
initializations. The uncertainty of the samples is quantified by the disagreement
between the model predictions.

4. CoreSet (Sener and Savarese, 2018) solves the k-center problem using the pool-
embeddings of the last dense layer (128 neurons) before the soft-max output to
pick samples for labeling.

5. BADGE (Ash et al., 2020) uses the gradient of the loss (given pseudo labels), both its
magnitude and direction, for k-means++ clustering, to select uncertain and diverse
samples from a batch.

6. Confidence-sampling (Wang and Shang, 2014) selects samples with the lowest class
probability of the soft-max predictions.

7. Entropy-sampling (Wang and Shang, 2014) calculates the soft-max class probabilities’
entropy and then selects samples with the largest entropy, i.e., where the model is
least certain.

8. ALIL (Liu et al., 2018): we modify ALIL’s implementation (that is initially intended
for NLP tasks) to work on image classification task. Due to the high runtime costs of
running ALIL (as the acquisition size is 1), we perform the training of ALIL for 20
episodes. We trained the ALIL policy network with a labeling budget B of 1, 000 and
an up-scaled policy network comparable to that of our method along with a similar M
as we use to evaluate the other AL approaches. We left the coin-toss parameter p at
0.5, and the k parameter for sequential selections from a random subset of Dpool at 10.

We use the variation ratio metric (Gal et al., 2017) to quantify and select the data samples
for labeling from the uncertainty obtained from MC-Dropout and Ensemble heuristics. The
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variation ratio metric is given by its Bayesian definition (Gal et al., 2017) for a data sample
x 2 Dpool in Equation 3 and for an ensemble expert (Beluch et al., 2018) in Equation 4:

variation-ratio(x) = 1�maxyp(y|x,D) (3)

= 1� m

N
, (4)

where m is number of occurrences of the mode and N is the number of forward passes or
number of models in the ensemble.

A.1.2 Datasets

We show samples of the three datasets MNIST, Fashion-MNIST and Kuzushiji-MNIST in
Figure 9 to illustrate their similarity. Extended MNIST consists of handwritten letters, while
the other image datasets used in the evaluation (CIFAR and SVHN) di↵er greatly and have
color information.

Figure 9: Examples for the three datasets MNIST, Fashion-MNIST, and Kuzushiji-MNIST.

(a) MNIST (b) Fashion-MNIST (c) Kuzushiji-MNIST

Figure 10: The overlap plots for all datasets MNIST, FMNIST and KMNIST datasets.

A.2 Policy Training

A.2.1 Exploration-Exploitation in DAgger

DAgger uses a hyper-parameter p that determines how likely ⇡ predicts the next action, and
thereby setting the next state, instead of using the best expert from E . In this preliminary
study we compare the influence it has to either fix p to 0.5 or to use an exponential decay
parameterized by the number of the current episode epi: 1 � 0.9epi. We train the policy
on MNIST for 100 episodes with a labeling budget of 1, 000 and an acquisition size of 10
(as before). Our result is that the fixed policy outperforms the exponential one by a small
margin for the transfer of the policy to another dataset than the trained one, which is in
line with previous findings (Liu et al., 2018).
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A balanced (i.e., fixed) ratio does not emphasize one over the other, whereas an expo-
nentially decay quickly relies on the policy for selecting new states of the dataset, and thus
it trains on too few optimal states over the AL cycle.

A.2.2 Overlap ratios

Figure 11: Overlap with any expert on Fashion-MNIST.

In addition to analyzing complementary compositions IALE’s acquisitions, we show
overlaps with each baselines independently. This detailed view shows which heuristic ⇡
imitates the most. The overlap is given in percent in relation to the baselines (see Figure 10)
for di↵erent datasets. We plot second-order polynomials, fit to the percentages (given as
dots) over 100 acquisitions of size 10. Interestingly, the overall overlap is lower on FMNIST,
where our method is the only one that beats a random sampling. We confirm again that ⇡
mostly imitates uncertainty-based heuristics, i.e., soft-max heuristics and MC-Dropout, and
the uncertainty-/diversity-heuristic BADGE (close behind). Ensemble is overlapping mostly
at the beginning. CoreSet has the lowest overlap. Interestingly, the policy chooses about
half of the samples di↵erently from any single baseline. On the other hand, the overlap with
any expert is relatively high but decreases over the AL cycle (see Figure 11). In other words,
the policy selects a portion of samples that none of the experts selected. Note that IALE’s
acquisitions are build from combinations of the heuristics (instead of single votes), as we
show in Section 4.3. Here, the percentages do not sum up to 1 as the overlap ratios between
baseline and IALE are independent and may also overlap with each other.

A.3 Policy Transfer

In this section we provide additional results on our studies on how our method performs
in regard to applying it to unseen scenarios. These include that we use di↵erent datasets
and classifier models in training and application of the policy. We show that ⇡ learns a
task-agnostic AL strategy, that outperforms the baselines.

A.3.1 Classifier Architecture

In the evaluation Section 4, we show that our method is not bound to a specific classifier
architecture. Here, we add results for the MLP architecture and give raw curves for a
ResNet-18 classifier. To train IALE, we train policies on MNIST and apply them to all
MNIST variants. All results for the experiments are given in Figure 12. We see the robustness
of ⇡ over fundamentally di↵erent classifier architectures (2 to 18 layers). The deviations
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for ResNet-18 are very large due to the very deep architecture and the modest amount of
training data. We use median filtering in Figures 12g, 12h, and 12i.

These experiments show that ⇡ can learn AL strategies for both very small and very
deep architectures and still outperform baselines. Even though the strongest baselines, i.e.,
CoreSet and MC-Dropout, come close to our method in accuracy, they are less versatile and
require more computational resources, that is especially noticeable on deeper architectures.

(a) MLP on MNIST (b) MLP on FMNIST (c) MLP on KMNIST

(d) ResNet-18 on MNIST (e) ResNet-18 on FMNIST (f) ResNet-18 on KMNIST

(g) ResNet-18 on MNIST (h) ResNet-18 on FMNIST (i) ResNet-18 on KMNIST

Figure 12: MLP and ResNet-18 classifiers, data averaged or median filtered. Active learning
performance of the trained policy in comparison with the baseline approaches on MNIST,
FMNIST and KMNIST datasets.

A.3.2 Classifier Architecture and Dataset

In Section 4.4, we show that ⇡ learns active learning independent from dataset and classifier.
Here, we show additional results that mix both the source datasets and the classifiers.

We report the results for applying ⇡ (trained on ResNet-18 and MNIST) to a CNN and
all MNIST variants in Figure 13. IALE is always performing at the top, showing that it
learns a model- and task-agnostic active learning strategy that transfers well.

CIFAR-10. We show additional results for applying ⇡ to a ResNet-18 classifier on
CIFAR-10. To reiterate, we use two di↵erent ⇡: ⇡1 was trained using ResNet-18 and MNIST
(IALE ResNet) and ⇡2 was trained using CNN and MNIST (IALE CNN). The complete results
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(a) MNIST (b) Fashion-MNIST (c) Kuzushiji-MNIST

Figure 13: Applying a policy trained using a ResNet-18 classifier (trained on MNIST) to a
CNN-based classifier (on MNIST, FMNIST and KMNIST).

(a) full (raw) (b) full (filtered) (c) detail (filtered)

Figure 14: Full and enlarged segments of learning curve: Applying ⇡ trained on a CNN
(IALE CNN) or ResNet-18 (IALE ResNet), trained on MNIST, to a ResNet-18 classifier on
CIFAR10.

in Figure 14 are noisy due to the acquisition size of 10, and we report the raw learning curves
(Figure 14a) and median filtered learning curves (Figure 14b). The most interesting segment
of the learning curve is in Figures 14c in more detail and filtered. The results generally
show the feasibility of transferring ⇡ to both di↵erent classifiers and datasets. IALE is on
par or better than random sampling, and the other baselines are either on par or worse than
random sampling (some of them considerably).

SVHN. We show the averaged learning curves for SVHN in Fig. 15a besides the smoothed
averages for improved visibility in Fig. 15b. While the results exhibit some variance, we can
clearly see that IALE performs best (and is the only AL methods that is consistently able to
beat a random sampling.

While more experiments are certainly required to further emphasize these initial claims
of generalizability to more diverse tasks, these findings are already very promising.

A.4 Ablation Studies

A.4.1 Hyperparameters.

We report fine-granular steps of acquisition sizes (see Figure 16a) with values between 1
and 10, plus 20 and 40, for |Dsub| of 100. Overall, a clear di↵erence is not visible below 10
samples. For enhanced readability, we show a magnified section of the varied acquisition
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(a) SVHN. (b) SVHN.

Figure 15: The more complex dataset SVHN requiress more samples than MNIST variants.
Learning curves as (a) averages and (b) smoothed plots).

sizes and |Dsub| in Figure 16b, that clearly shows the benefits of tuning |Dsub| to a suitable
value for the acquisition size.

Acquisition sizes including baselines: We additionally compare the baseline active
learning methods with our approach, as these exhibit di↵erent performance at di↵erent
acquisition sizes, see Figure 16. We have included comparisons with acquisition sizes of
either 1 or 100 (1 or 3 repetitions). For our method, for an acquisition size of 1 we chose
|Dsub| = 100 and for acquisition size of 100 we chose |Dsub| = 2, 000. While the results show
that IALE outperforms the baselines they also highlight the large e↵ect that the acquisition
size has on some of the baseline methods. For instance, CoreSet constructs better set covers
with larger batches, and BADGE increases its accuracy by constructing a representative
sampling as well. At the same time the uncertainty-based methods, apart from Entropy,
remain una↵ected.

(a) Varying acq-sizes. (b) Varying acq-sizes (c) acq-size 1. (d) acq-size 100.

Figure 16: (a) Evaluating the acquisition sizes from 1 to 10 on FMNIST, and (b) varying
di↵erent sub-pool sizes on MNIST. Diversity vs. uncertainty: Some experts are more suitable
to other acquisition sizes, see (c) and (d), both evaluated on MNIST.

A.4.2 Varying Experts

We present more results for variations of sets of experts in Figure 17, and train the policies
with the unchanged hyper-parameters and the CNN classifier on MNIST. The results for all
three datasets show that the generally high performance of IALE holds for the leave-one-out
sets of experts, with the full set of experts being consistently among the best performing
policies.
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(a) full state, MNIST. (b) full state, FMNIST. (c) full state, KMNIST.

(d) No predictions, MNIST. (e) No predictions, FMNIST. (f) No predictions, KMNIST.

(g) No gradients, MNIST. (h) No gradients, FMNIST. (i) No gradients, KMNIST.

Figure 17: The active learning performance for each (leave-one-out) set of experts. For
partial state (without predictions, without gradients), we plot active learning performance
for each (leave-one-out) set of experts.

A.4.3 Varying State Elements

Next, we study the state more closely. For unlabeled samples, the state contains two types
of representations for predictive uncertainty: the statistics on predicted labels M(xn) and
the gradient representations g(Me(xn)). In this study, we focus on leaving out one or the
other. To get the full picture, we again train sets of experts for reduced states.

In Figure 17 we see that dropping gradients generally decreases performance (bottom
row), while dropping predicted labels M(xn) a↵ects performance very little (top row).
However, the influence of di↵erent sets of experts is more important. We cannot see that
a particular set of states and experts generally outperforms others consistently (while the
negative e↵ect of leaving out g(Me(xn)) is consistently visible). Overall, we find that using
as many experts as available, combined with a full state both performs well and works
reliably. Even though training a policy this way does not guarantee the best performance, it
always performs among with the group of best policies.
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Abstract

Humans innately measure the distance between instances in an unlabeled dataset using an
unknown similarity function. Distance metrics can only serve as a proxy for similarity in
information retrieval of similar instances. Learning a good similarity function from human
annotations improves the quality of retrievals. This work uses deep metric learning to learn
these user-defined similarity functions from few annotations for a large football trajectory
dataset. We adapt an entropy-based active learning method with recent work from triplet
mining to collect easy-to-answer but still informative annotations from human participants
and use them to train a deep convolutional network that generalizes to unseen samples.
Our user study shows that our approach improves the quality of the information retrieval
compared to a previous deep metric learning approach that relies on a Siamese network.
Specifically, we shed light on the strengths and weaknesses of passive sampling heuristics
and active learners alike by analyzing the participants’ response e�cacy. To this end, we
collect accuracy, algorithmic time complexity, the participants’ fatigue, time-to-response,
qualitative self-assessment and statements, as well as the e�ects of mixed-expertise annota-
tors and their consistency on model performance and transfer learning.

1 Introduction

Position tracking of persons, vehicles or objects is ubiquitous and enables various trajectory data mining
tasks (Zheng, 2015), such as match or performance analysis in popular sports like football (Lö�er et al.,
2021), hockey (Chen et al., 2005) and basketball (Sha et al., 2016), or (public) transport planing and mobility
analysis (Fernández et al., 2017; Shen et al., 2019; Yadamjav et al., 2020). With each additional moving
agent, the data become increasingly complex due to its often unstructured and high-dimensional nature.
For example, football has 23 trajectories (players and ball) that are typically tracked via multi-camera
video systems Lö�er et al. (2021). This a�ects tasks such as similarity-based information retrieval, which
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queries similar occurrences to a given query scene (Sha et al., 2016). Here, a scene is an ensemble of agents’
trajectories in a window of time.

In such large and complex datasets, information retrieval requires two expensive steps. First, the unstruc-
tured trajectories are optimally assigned, e.g., using the Hungarian algorithm Kuhn (1955). Second, the
pairwise distance between the matched pairs of trajectories is computed on the raw trajectory data. Already
by themselves, the two steps do not scale well to more realistic datasets that can have both a large number
of samples and high dimensionality.

Recently, convolutional Siamese networks were leveraged by Lö�er et al. (2021) to learn approximations of
both the trajectory assignment and distance metric. The resulting lower-dimensional representation enables
the scaling up of Euclidean distance-based information retrieval. However, there are two limitations. First,
the Euclidean distance in itself is limiting, e.g., it does not weigh subjectively more important trajectories
higher, and is a�ected by the data’s high dimensionality (Canessa et al., 2020). Second, following directly
from estimating the Euclidean distance of high dimensional data, the embedding captures global ordinal
structures better than local ones (Lö�er et al., 2021).

This work proposes to actively learn a distance function from human annotations. This learned similarity
function is independent of the data’s dimensionality and leads to a lower-dimensional ordinal embedding
that more closely matches human perception. We address the associated costs of the human-in-the-loop by
adapting an Active Learning (AL) sampler. We hypothesize that human annotations preserve more relevant
information than the Euclidean distance and that a neural network can learn this perceived similarity from
few annotations. We pay special attention to mixed-expertise annotators.

Our method learns rank-ordering from relative comparisons of a tuple of data instances using an active
query selection method. In our experiments, we choose InfoTuple (Canal et al., 2020) over Crowd Kernel
Learning (Tamuz et al., 2011) as it generalizes triplet queries to arbitrary tuple size and queries the oracle
with more informative tuples. This has clear benefits: due to the tuples’ larger size, they provide more
context and are easier to annotate, and are also more sample e�cient. We conduct a user study to evaluate
the Active Learning sampling and use a well-suited football trajectory dataset for it. The study is centered
around challenging relative comparison queries to human annotators. The query tuple composition impacts
the e�ciency of annotators, who may skip hard queries (see pre-study in Appendix A.1). Furthermore,
while participants may have di�erent similarity functions in mind, we can use a proxy similarity function
for pre-training (Sha et al., 2016; Lö�er et al., 2021). Crucially, the study allows a broader evaluation than
accuracy per labeled sample. It also evaluates practically important questions such as the impact of skipped
responses for di�erent tuple composition algorithms, and it reports the annotators’ intra-rater consistency
and inter-rater reliability. We use a questionnaire for qualitative self-assessment of expertise and perceived
similarity. These properties make our study suitable for the evaluation.

We pose three broader research questions. RQ1: How consistent and reliable are the participants? RQ2:
What is the best baseline heuristic to generate tuple queries? RQ3: Does active sampling perform better than
non-active sampling? Our experiments then also answer which methods are the most suitable with respect
to pure improvement in e�ective accuracy, relative time e�ciency (i.e., user response time), or sampling
e�ciency (i.e., number of tuples skipped). We conclude with a study on how users’ response consistency
a�ects the learned metric and the capacity for transfer learning. We summarize our contributions as follows

• We reduce the computational complexity of the InfoTuple active learner.
• We experimentally analyze the e�ciency of our method with a user study on active learning methods

on real-world data, analyzing strengths and limitations.
• We answer the research questions and show the adapted InfoTuple active sampling leads to higher

triplet accuracy than (non) active sampling methods but falls behind slightly in sampling e�ciency.
In addition, participants can form relatively consistent groups of user-specific similarity functions.

• We release a simple but e�ective web app for active learning experiments1.

1Code available at https://github.com/crispchris/Active-Learning-of-Ordinal-Embeddings
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The rest of this article is structured as follows. Section 2 formulates the problem and presents AL methods
and adaptations. Section 3 explains our experimental design, including the procedure, metrics, participants,
and dataset. We present the results in Section 4 and discuss them in Section 5. Section 6 concludes.

? finetune

sampleQuery

Ordinal 
Embedding

(a) Left: We collect participants’ responses to relative similarity queries. In our study, we use a tuple size
of nine. Right: We finetune a neural network to learn an ordinal embedding. We use di�erent (active)
sampling methods to generate queries. We show a 3D UMAP (McInnes et al., 2018) plot of the learned
embedding purely for visualization.

Warm-
up

Repeat 
#1 Rnd Active

(NN)
Repeat 

#2Rnd/NN NN InfoTuple

RQ2 RQ3RQ1 RQ1

consistency non-active consistency active

(b) We ask participants to annotate InfoTuples in sequential phases. We start with a warm-up, then
measure consistency in two repeated phases (RQ1). The main research questions are answered in a non-
active (RQ2) and in an active phase (RQ3). The query tuple composition heuristics in RQ2 are Random
(Rnd), Nearest Neighbor (NN), and their combination (Rnd/NN).

Figure 1: The study consists of several di�erent annotation phases. (a) shows the procedure to collect
annotations and to finetune and sample from the learned embedding. (b) shows the multi-phase study design
that compares di�erent sampling strategies and evaluates model performance with respect to e�ciency and
e�ectiveness.

2 Method

Tuple composition and sample selection are important for learning an ordinal embedding specific to a human’s
similarity function. We formulate the problem first as pairwise similarity learning using a Siamese network
like Lö�er et al. (2021), which initially approximates assignments through metric learning (Section 2.1).
This delivers a meaningful embedding to warm-start tuple selection strategies. Next, Section 2.2 extends the
objective to triplet-based learning to generate an ordinal embedding. Section 2.3 then explains optimizations
of InfoTuple, and our adaption to select the most informative samples from a meaningful candidate set.
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2.1 Problem Formulation

We first investigate calculating pairwise distances of spatio-temporal matrices x̨ of dimensionality S ◊ T :

x̨ =

S

WWWU

x1,1 x1,2 ... x1,T

x2,1 x2,2 ... x2,T
...

...
. . .

...
xS,1 xS,2 ... xS,T

T

XXXV
,

where the number of the dimensions of the trajectory S is the spatial dimension (S = 2 for 2D positional
tracking), and the number of time steps T is the temporal dimension (T = 125 for 5 s tracking at 25 Hz).
A trajectory may correspond to an agent like a football player. A row vector xs,1:T represents a single
dimension s over time T. Positional tracking in sports may be calculated from multi-perspective video
feeds Lö�er et al. (2021). For 5 s scenes of one player sampled at 25 Hz, this produces trajectories x̨ of the
dimensionality 2 ◊ 125.

In multi-agent tracking, a scene X consists of N di�erent trajectories such that X = {x̨
(1)

, x̨
(2)

, .., x̨
(N)

} (Löf-
fler et al., 2021). See Fig. 1a for three scenes. Hence, X is of dimensionality N ◊ S ◊ T . For a scene with
all 22 players and 1 ball, this results in a size of 23 ◊ 2 ◊ 125. However, the ordering of the dimension N is
unknown, because agents may follow di�erent strategies in each scene and can adapt their role in a game as
needed Bialkowski et al. (2014). This is problematic for calculating the distance between matrices (Lö�er
et al., 2021). Specifically, given a pair of matrices X1 and X2, the respective pairwise assignment of vectors
x̨

(i) and x̨
Õ(j) from each matrix is unknown.

Hence, to calculate the matrices’ pairwise distance, we first compute the optimal row-wise assignment in the
dimension N of X1 and X2 using the Hungarian algorithm (Kuhn, 1955), that minimizes the sum of pairwise
distances between the matrices in O(n3). For this we calculate the distance d between two trajectories x̨ and
x̨Õ as the average Euclidean distance over the spatial dimensions at each point in time (Lö�er et al., 2021):

d(x̨, x̨Õ) = 1
T

Tÿ

t=1
||x̨:,t ≠ x̨Õ:,t||2 (1)

The distance between ensembles of trajectories dens(X1, X2) is simply the sum of distances between trajecto-
ries (as in Eq.1) of matrices X1 and X2, that are optimally assigned along dimension N (using the Hungarian
algorithm). In terms of sports tracking data, this procedure maps players from one scene optimally onto
players of another scene such that the distance between scenes is minimal.

We then further follow Lö�er et al. (2021) and use Deep Siamese Metric Learning with a Temporal Convo-
lutional Network (Lea et al., 2016) with a Resnet architecture (He et al., 2016) f to learn an approximate
assignment and lower dimensional, distance-preserving embedding. The observations are pairs of matrices
X1 and X2 sampled uniformly at random from all possible permutations of the dataset. Our goal is to
find an embedding that preserves the distance dens(X1, X2) ¥ d̂ens(„X1, „X2) where d̂ens is the Euclidean
distance between the learned lower dimensional representations f(X1) = „X1 and f(X2) = „X2. Hence, the
learning objective can be formulated as

L(X1, X2) =
!
|| f(X1) ≠ f(X2)||2 ≠ dens(X1, X2)

"2
. (2)

We use two L2 regularization terms. The first || f(X1)||2 + || f(X2)||2 centers learned representations and the
second ||◊||2 performs weight regularization on the network f’s parameters ◊. d̂ens is the Euclidean distance.
It is simple to implement but still measures play similarity just as well as, e.g, Dynamic Time Warping,
Fréchet distance or lŒ distance (Sha et al., 2016).

X1 and X2 contain trajectories of multiple agents which leads to a computationally expensive assignment
problem (Sha et al., 2017) between two sets of trajectories describing two di�erent scenes. This is because role
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assignments are not fixed and often even disjoint between teams. Sha et al. (2017) build a tree structure to
perform the assignment, that others subsequently use to dynamically set role-based assignments independent
of a priori positions (Di et al., 2018). In contrast, we estimate these assignments similar to Lö�er et al.
(2021) (based on trajectory data and agnostic of roles) who compare three approaches: random assignments,
exploiting additional meta-information such as roles, or inferring spatial proximity from data. The last
variant uses a fixed grid template and assigns rows to channels, but this introduces sparsity in these inputs,
which become overdetermined, as there are fewer players than entries in the grid template. Instead, we
propose an improved template matching algorithm: we center a circular template with as many available
positions as rows over the spatial center of X. Then, we fit the template’s variance in each dimension S to
match X. For a pair X1 and X2, the template fitting and matching produces representations, with that we
can estimate pairwise distances with lower error than Lö�er et al. (2021), but without introducing sparsity
in the network’s inputs. See Appendix A.4 for the experimental comparison of the variants.

In summary, this approximates and reduces the computational complexity for s scenes from O(s · n
3) down

to O(s · m) where m is the size of the network’s embedding.

2.2 Active Metric Learning

Learning a metric from human annotators is costly. Active Learning helps reduce the amount of labeled
relative comparisons by querying the oracle with informative samples (Settles, 2009; Houlsby et al., 2011).
Active Learners use a model state, an acquisition function, and a query format.

Initial model state. Performing active sampling on a non-random model state is called warm-starting.
Since there are no ground-truth labels available, we can use the learned Euclidean embedding to warm
start AL methods, as inspired by Simo-Serra et al. (2015). The Euclidean embedding is independent of the
participants’ similarity function and can serve as a more general early estimate of similarity. Following that,
we may then fine-tune this pre-trained model to an initial set of annotations before actively selecting queries.

Acquisition function. For learning from relative comparisons, the acquisition function needs to construct
the query Q from the most suitable candidate samples from the dataset. Following the notation from Canal
et al. (2020), a tuplewise query Qn at time step n of the AL procedure has a "head" object an and an
un-ordered "body" of objects B

n = (bn
1 , b

n
2 , ..., b

n
k≠1). Now Qn = (an, B

n) denotes the n
th tuple query, and a

participant’s ranking response R(Qn) = (R1(Qn), ..., Rk≠1(Qn)) which is a permutation of B
n rank-ordered

by similarity such that Ri(Qn) ª Rj(Qn), if i < j. This indicates that the oracle ranks the object Ri(Qn)
more similar to the anchor an than the object Rj(Qn) (Canal et al., 2020).

Next, we follow a principled approach for an initial Active Learning heuristic. Given the head Xa, we
categorize closer samples in the Euclidean embedding as either positive Xp or negative Xn. Xuan et al.
(2020) further break down neighbors based on their distance to Xa. Hard negatives are close to the head
but dissimilar, whereas easy negatives are far away from it and least similar. Of these two types, the hard
samples are most beneficial for learning, whereas easy ones produce no useful gradient (Xuan et al., 2020).
Conversely, hard positives are highly similar samples, that are far away from Xa, and thus mining these for
tuples is di�cult. Easy positives on the other hand are naturally available in an appropriately pre-trained
embedding. Xuan et al. (2020) show that selecting easy positives keeps intra-class variance and helps to
avoid over-clustering of the embedding.

We adapt the triplet mining concepts to Active Learning. Query tuples Qn composed of Xa’s nearest
neighbors can contain both easy positives and hard negatives. The other samples with higher distance
from Xa are hard positives and easy negatives and are least useful when learning similarity. Nadagouda
et al. (2022) recently proposed a similar NN acquisition function to collect both similarity and classification
responses, see Sec. 2.4.

Query format. Generally, an ordinal embedding can be learned from tuples of size s Ø 3. A triplet
loss (Chechik et al., 2010) over the three samples Xa, Xp, Xn is defined as follows:

L(Xa, Xp, Xn) = max(Î f(Xa) ≠ f(Xp)Î2 ≠ Î f(Xa) ≠ f(Xn)Î2 + 1, 0) (3)
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Canal et al. (2020) show that human annotators can benefit from larger tuple sizes than three. Query tuples
Qn or arbitrary size greater than three can provide more context for considering the similarity and can be
more sample-e�cient. We can simply decompose a response R(Qn) into triplets t = {Xa, Xp, Xn} and use
triplet loss. In this work, we determine the tuple size experimentally via a pre-study.

To summarize, we establish Active (NN) as an Active Learning heuristic, that constructs queries of arbitrary
size from the nearest neighborhood of an anchor sample in an embedding.

2.3 Informative Queries

The selection of easy positives and hard negatives may not reliably construct the most informative queries.
InfoTuple (Canal et al., 2020) improves upon this by maximizing the information gain of new queries. Given
a probabilistic embedding, and previous and candidate queries, InfoTuple then selects that query that maxi-
mizes the mutual information that a response provides. It then uses a d-dimensional probabilistic embedding,
such as t-Stochastic Triplet Embedding (tSTE) (Van Der Maaten & Weinberger, 2012) or probabilistic Multi-
Dimensional Scaling (MDS) (Tamuz et al., 2011), to embed the dataset X of size N . Next, Canal et al.
(2020) use the datasets’s embedding M œ Rd◊N to define a similarity matrix K = MT M . From this
similarity, the authors calculate a N ◊ N pairwise distance matrix D for X . Given the queries Q1, Q2,
..., Qn≠1 and their responses R(Q1), R(Q2), ..., R(Qn≠1), they select the next query from a set of possible
queries using the conditional entropy H(·|·) of the next possible reply R(Qn):

arg min
Qn

H(R(Qn)|R(Qn≠1)) ≠ H(R(Qn)|K, R(Qn≠1)) (4)

The equation trades of two terms: the first term selects for uncertain queries provided previous responses
R(Qn≠1) while the second term selects for unambiguous responses R(Qn) that can be encoded in the simi-
larity matrix K by responses R(Qn≠1). Balancing these two measures selects queries with high entropy, but
that can be consistently annotated by the oracle.

Next, Canal et al. (2020) develop simplifying assumptions on the joint statistics of query and embedding to
enable a tractable estimation via Monte Carlo sampling. Importantly, they assume a Gaussian distribution
on inter-object distances, and only need to sample the distribution for the current query Qn, as proposed by
Lohaus et al. (2019). With these simplifications Eq. 5 and Eq. 6 depend only on the distance matrix D:

H(R(Qn)|R(Qn≠1)) = H

A
E

DQn≥N n≠1
Qn

[p(R(Qn)|DQn)]
B

(5)

H(R(Qn)|K, R(Qn≠1)) = E
DQn≥N n≠1

Qn

[H(p(R(Qn)|DQn))] (6)

They slightly abuse the notation by using H(X) = H(p(X)) for a probability mass function p of random
variable X, and N

n≠1
Qn

to represent the Gaussian distribution N (Dn≠1
Qn

, ‡
2
n≠1). We refer to Canal et al. (2020)

for further details.

2.4 Adaption

In this work, we use a tandem of a generalizing neural network for learning similarity and InfoTuple’s
probabilistic model for selecting queries via Active Learning. We adapt InfoTuple to increase its e�ectiveness,
leading to less ambiguous queries, improved sampling e�ciency, and a reduction of the required time to select
informative tuples.

E�ectiveness. Following the assumptions in Sec. 2.2, we use the neural network’s embedding to generate
sample candidates to form the body B from the neighborhood of a head a. This di�ers from the approach of
Nadagouda et al. (2022), which selects the most informative nearest neighbor query from all possible queries.
We do this because our problem domain su�ers from sparse similarity. For instance, successful goals are
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typically rare but passes in midfield are much more common, leading to a long-tailed, imbalanced distribution
of sample similarity with sparsity in the tail (Wang et al., 2010). Thus, queries may often provide no positive
and informative candidates. This leads to a high rate of skipped queries, which in turn leads to fatigue of
the human annotators. We discuss this phenomenon in Sec. 5. This pre-selection from the Neural Network’s
embedding space increases the likelihood of finding similar candidates and reduces the subjective di�culty
of the annotation task. Based upon a sampling of m candidates, InfoTuple then selects the most informative
query Qn. The set of m candidates is larger than the tuple size of Qn and is a hyperparameter (see Sec. 3.5).

E�ciency. The temporal complexity of the selection algorithm is primarily bound in the Monte Carlo style
computation of Eq. 5 and Eq. 6. First, reducing the available candidate samples for greater e�ectiveness also
reduces computational complexity. It leads to a smaller set of candidate samples available for constructing
queries from. Second, we downsample the remaining m samples like Canal et al. (2020), which further
reduces the number of constructed queries Q that have to be evaluated.

3 Experimental Design

In this section, we design a user study to answer the initial research questions.

3.1 Procedure

Which sample is the most similar to the anchor?

IS

teaminballpossession opponents ball

No scene is similar.  

You've answered 2 queries.

Figure 2: The web-based query page asks annotators to compare eight samples with an anchor and to either
select the most similar sample or skip the query. Each sample shows the team in ball possession (blue), the
defending team (green), and the ball (orange).

The study is designed in several phases and continuously collects annotations from 18 participants, see
Fig. 1b. A smaller pre-study with 7 participants provided preliminary insights. With its help, we set the
tuple size of InfoTuple to one anchor and eight samples for its body. The number of required samples for
learning a meaningful ordinal embedding was about 250 to 300 triplets. Hence, the user study collects an
equivalent number of tuples. Furthermore, we chose to train user-specific models, as the pre-study showed
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that learned similarity is highly individual and does not generalize well. We include an evaluation of this
notion in Sec. 4.4.

Task description. The task is to annotate an InfoTuple such as in Fig. 2. Participants compare an anchor
with eight other samples, and then either choose the most similar sample, based on their own function of
similarity or skip the query.

Phases. The user study is segmented into five parts. The first is an introduction with a description of
the data and the mechanics of the annotation process. The second is a short warm-up of five queries, that
familiarizes participants with the mechanics of the annotation website. Next, the split phase RQ1 occurs
before and after RQ2. Finally, the active learning RQ3 concludes. RQ1 addresses intra-/inter-rater metrics.
We repeat a fixed set of InfoTuple as Fig. 1b shows. We denote these sets as repeated set and highlight the
phases as RQ1 in the figure. The repetition takes place after other phases, and the location of samples on
the website is randomized, in order to break up any potentially lingering memories of the spatial layout of
repeated queries. This way, we collect at least 20 InfoTuple but increase the set for each skipped sample.
Hence, the repeated set may also grow in size as it also repeats skipped samples. Next, for the second
research question, we collect annotations with di�erent compositions of InfoTuple. The figure highlights the
three segments as RQ2: Rnd, Random/NN and NN. We collect 20 InfoTuple to answer the research question
and 10 more for testing. Finally, the last phase labeled RQ3 executes two di�erent active learning strategies
and trains neural networks with the annotations collected from participants. The first method is the Nearest
Neighbor active learner, and the second is the adapted InfoTuple algorithm. We collect 20 InfoTuple with
an acquisition size of one.

Warm start. We use a warm-start strategy for active learners. Starting from a pre-trained Siamese network,
we finetune a model for each participant with their replies to the repeat #1 phase.

Annotation tool. The annotation tool is implemented in Python as a Flask web app. It uses the PyTorch
framework for deep learning and integrates InfoTuple 2. The user study was performed on an AMD Ryzen
7 3800X (64GB RAM) and an NVidia Geforce RTX 2070 Super (8GB VRAM), and participants used their
clients to access a web frontend. Each participant had the same computing time and resources available.

3.2 Survey

We ask participants to self-assess in order to experiment with extensions from individual models toward
generalized models of user-defined similarity. This serves as a qualitative, parallel approach to the intra- and
inter-rater metrics.

We provide a simple questionnaire to inquire about the participants’ self-assessment of their expertise and a
qualitative description of their individual similarity function. We specifically ask them about their definition
of similarity before and after the participation. This allows for qualitatively estimating the clustering of
participants into groups that employ similar notions.

The questions were the following:

1. What is your expertise in football on a scale of 1 (novice) to 6 (expert)?

2. What will you look for when you compare football scenes’ similarity?

3. Did your definition of similarity change?

4. What did you look for when you compare football scenes’ similarity?

The first two questions were answered when looking at the tutorial. To capture any changes, the last two
questions were answered after finishing all queries of the procedure. See Appendix A.2 for an analysis.

2https://github.com/siplab-gt/infotuple

8



Published in Transactions on Machine Learning Research (04/2023)

3.3 Metrics

Triplet accuracy is defined as the agreement between two triplets (a, b1, b2) and (aÕ
, b

Õ
1, b

Õ
2) for a set of

annotated triplets. In this study, we generate triplets from annotated tuples of arbitrary size.

Intra-rater consistency C for a participant Pi measures the agreement of annotations and skipped samples
between the two phases Repeat #1 and Repeat #2:

C(Pi) =
ratingsagreement(Pi)

ratingstotal(Pi)
. (7)

Pairwise inter-rater reliability R for two participants Pi and Pj includes numbers of all annotations and
skips. It is the fraction of ratings in agreement over the total number of ratings:

RPi,Pj =
ratingsagreement(Pi, Pj)

ratingstotal(Pi, Pj) . (8)

Response e�ectiveness (Bernard et al., 2018) E is the measure of accuracy per time spend on a response.
More e�ective sampling methods have a higher ratio relative to others.

E = triplet accuracy
response time . (9)

We additionally evaluate the total e�ectiveness TE of AL samplers, which includes the time spent sampling
and training a model. While this depends on the choice of model and available resources for sampling and
training, we consider it a relevant performance factor

TE = triplet accuracy
response time + computation time . (10)

A high number of skipped responses may lead to participants’ fatigue. Hence, we track the methods’ label
e�ectiveness LE. The accuracy relative to the number of skipped annotations provides a measure that
extends the concept of e�ciency (Bernard et al., 2018), which only measures the number of labeled instances
over time.

LE = triplet accuracy
skipped responses . (11)

3.4 Dataset

We use a dataset from the German Bundesliga from season 2014/15, that consists of trajectories sampled at
25 Hz of 304 games, extracted from multi-perspective video feeds.

For our user study, we choose one game and extract scenes of 5 s fixed length with 50% overlap of 2.5 s.
We further pre-process the data to simplify the implementation: we transform the data so that the team in
ball possession players from left to right, we only use active (not paused) scenes, where one team has more
ball possession than the other, and we require that no players are missing. This yields 1, 005 samples for
the game. We consider the experiment size to be minimal but still representative. It allows us to control
side e�ects so that we can see and compare the actual performance of the di�erent methods. This helps to
answer the research questions and still tests the proposed method.

We pre-train the baseline Siamese network similarly to Lö�er et al. (2021). For this, we extract about
1,200,000 scenes from 304 games with a smaller overlap of 1 s, and use the same pre-processing. Then, we
split the data into train/validation/test splits of 80/10/10%. As we cannot process all possible combinations
of scene pairs, we instead randomly sample 10 million pairs for training and 1 million otherwise. Then, we
train using the regularized Siamese loss (see Eq. 2) and the ellipse assignment method (see Sec. 2.1). We
refer to Lö�er et al. (2021) for additional details on the baseline’s training and optimizer configuration.
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Test dataset. There is no ground-truth dataset for user-specific similarity functions. A full set of compar-
isons would be unfeasible, given the combinatorial complexity, further motivating the use of Active Learning.
Hence, for the test dataset, we collect additional hold-out sets of each participant’s annotations. The in-
consistency of annotations then impacts the possible accuracy score and introduces a baseline test error.
Especially a low intra-rater consistency poses an upper limit of achievable performance.

Additionally, the composition of tuples itself may have a large impact on the test scores, as they represent
di�erent embedding neighborhoods. Annotations sampled at random for testing would provide information
on the ordinal embedding’s global order and are less biased. Test tuples from the anchor’s neighborhood are
based on the pre-trained Siamese embedding and thus are biased. However, they may provide some insights
into the embedding’s fine structure.

3.5 Experimental Setup

We use a Temporal Convolutional Network (Lea et al., 2016) with a Resnet architecture (He et al., 2016)
like Bai et al. (2018) and Lö�er et al. (2021). For its training, we use the triplet loss described earlier with
an Adam optimizer with a learning rate of 0.001 and batch size of 32 for 10 epochs after each acquisition.
We implement the experiments in PyTorch.

The InfoTuple method uses the tSTE to fit a probabilistic embedding. Furthermore, we select the hyper-
parameters for InfoTuple as follows. We sub-sample the candidates to 100 neighboring samples, that is about
10% of the whole dataset, and generate 10 random permutations as possible queries Qn. We set the number
of Monte Carlo passes to 10 and sub-sample the factorial of the 8-tuples with the factor 0.1.

4 Experiments

This section first presents the fundamental intra- and inter-rater metrics in Sec. 4.1. With this context, we
give the sampling e�ciency of the evaluated methods in Sec. 4.2 and we specifically show how the quality of
annotators’ replies a�ects the learning of their similarity functions in Sec. 4.2.1 Next, we analyze response
times and the amounts of skipping in Sec. 4.3, before we conclude with a study on clustering of highly
agreeing annotators in Sec. 4.4. We asked 18 participants (aged 20 to 35, one female) to take part in the
user study.

4.1 Intra- and Inter-Rater Metrics

As a first step, which will allow us to better understand the results, we evaluate the annotators’ intra-rater
consistency and their inter-rater reliability. This allows us to analyze similarity functions based on the
annotator’s noise as well as discover possible groups of similarity functions.

Intra-rater reliability. We determine participants’ reply consistency so that we can consider the noise
level of their replies in later analysis.

The procedure contains two identical sets of queries (Repeat #1 and Repeat #2) that we compare to calculate
consistency as defined in Eq. 7. Repeat #1 consists of at least 20 queries, with additional queries for each
skipped reply. Repeat #2 then repeats the exact same queries per user. We shu�e the samples in the UI to
avoid memory e�ects and repeat the set only after other annotation tasks.

Fig. 3a shows each participant’s consistency from a low of 0.25 to a high of 0.75. The typical reply consistency
clusters of 0.498 (±0.11), see Fig. 3b. We see two outliers, one to the low (p6) and to the high end (p11).
The consistency agrees with the participants’ self-assessment of their expertise as 1 for p6 and 6 for p11
on a scale of 1 (novice) to 6 (expert). Next, we normalize the self-assessment between 0 and 1, and show
the di�erence to measured consistency in Fig. 3c. The self-assessed expertise typically matches consistency
within 1 step up or down on the scale. This validates the quantitatively measured consistency. Furthermore,
this score may help decide whether to collect annotations from a participant, or whether the generic baseline
model is the better-performing alternative (see Sec. 4.2.1).
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(a) Intra-rater consistency on repeated queries is from
0.25% to 0.75% (random baseline at 12.5%).

(b) The intra-rater consistency centers around
49.8% (±0.11) with two outliers at the ex-
tremes.

(c) Survey self-assessment minus their mea-
sured consistency shows the small di�erence
between qualitative and quantitative expertise.

Figure 3: The intra-rater consistency in (a) shows how reliable participants determine similarity in a fixed
and repeated set of queries, and we show their distribution in b. (c) shows that participants’ self-assessed
expertise in the survey di�ers from measured consistency by 20% or 1.2 points on the scale of 6.

These results show that the participants answer queries inconsistently, as the mean consistency to find the
same similar samples from eight in total is 0.49(±0.12). Additionally, the consistency measures identify
unreliable oracles which help understand algorithmic performance better.

Figure 4: The inter-rater reliability on a fixed, repeated dataset shows whether participants form clusters of
similarity functions, or whether they have orthogonal notions of similarity.

Inter-rater reliability. The subjective similarity functions may be part of clusters. Similar metrics could
be learned from annotations if participants’ concepts of similarity are close enough. The identification of
such groups may be beneficial for analysis and fine-tuning.

The repeated sets of queries (Repeat #1) are identical for all participants. Only the actual number of
replies may di�er depending on skipped replies. Hence, it allows us to calculate the inter-rater reliability as
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Figure 6: Triplet accuracy averaged over all users on the test set. We initialize the training data with the
first Fixed dataset and then perform 20 acquisitions of size one. We train user-individual models and show
the averages.

defined by Eq. 8. This way, we can identify sets of participants whose similarity functions overlap su�ciently
to be considered as cluster members. We then use the reliability as the pairwise distance for hierarchical
bottom-up clustering with maximum linkage.

Figure 5: Hierarchial clustering dendrogram based on
inter-rater reliability as pairwise distance.

We show a heat map of the pairwise reliability
of the raters in Fig. 4 and a dendrogram of hi-
erarchical clusters in Fig. 5. In the heatmap, we
sort participants by their consistency from low to
high. Higher inter-rater reliability is highlighted
with brighter colors. Participants with lower con-
sistency also show lower inter-rater reliability.

The intra- and inter-rater scores appear to be sim-
ilarly ranged distributions. That means that the
replies of some participants may be similar enough
to cluster them together, allowing us to treat the
entire cluster as one individual. The dendrogram
shows hierarchical clusters of agreeing participants.
We search for clusters of inter-rater reliability that have similar linkage as the intra-rater consistency, and
highlight clusters with a linking distance equivalent to 0.37 or above, e.g., the four participants [p5, p10,
p12, p17] form one such cluster.

We can determine clusters of similarity functions from these results. Still, the noise of replies can be in
a similar magnitude as the reliability between participants, which corroborates the need for an analysis of
transfer learning within such clusters. We will conduct this in Sec. 4.4.

4.2 Triplet Accuracy

The gains in predictive accuracy per annotated sample demonstrate whether a tuple composition is informa-
tive for the model. The accuracy represents the usefulness of the model for the application. We hypothesize
that an active learning sampling of tuples is most e�cient in increasing accuracy.

For this, we calculate the triplet accuracy on user-specific test datasets over 20 acquisition steps. For each
participant, we first fine-tune the pre-trained network on 20 annotated InfoTuples from their Repeat #1
phases (equivalent to 140 triplets). We evaluate three non-active tuple composition methods as baselines
(Rnd, Random/NN, NN) in comparison to two active learning methods (Active-NN, InfoTuple). The base-
lines are constructed from replies to fixed queries, the active learners were not fixed but interactively adapted
to users. The test sets are user-specific sets of 10 annotated InfoTuple that were sampled randomly.

The test in Fig. 6 sees the active learners ahead, with InfoTuple on top. Purely randomly composed tuples
compare well, especially in the first half of the acquisition phase, but level out around 69% triplet accuracy.
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The remaining composition methods, which were constructed at least partially from the pre-trained network’s
embedding neighborhood stagnate for most of the duration of the experiment. These results for triplet
accuracy are for 40 InfoTuples (280 triplets) in total. We further investigate the ceiling of the triplet
accuracy, which is likely due to the noisy annotations and inconsistent replies, by training and testing user-
individual models with all 120 InfoTuples (or 840 triplets) from the di�erent annotation phases. The average
triplet accuracy then reaches 73.7% (±0.01), which is only marginally higher than previously. The low gains
with three times as many annotations show the diminishing returns of larger data collections.

Given the limited consistency of replies and the lack of ground truth data, there is an upper limit to the
model’s ability to learn. However, the relatively higher scores of InfoTuple are consistent and lead to increased
model accuracy, whereas the NN active learner comes in second but similarly to the baselines. In terms of
e�ciency, InfoTuple is clearly preferable.

4.2.1 Noisy Oracles

Consistency of replies a�ects triplet accuracy and influences the network’s ability to learn user-specific
similarity functions. A lower consistency is harder to train with, and a pre-trained network performs better
on test data than a fine-tuned one. More consistent annotations, however, enable fine-tuning. The InfoTuple
active learner benefits from more consistent annotations.

We compare the triplet accuracy for the pre-trained model with all fine-tuned models for each user. We again
use the users’ self-annotated test sets Rnd and compare the accuracy. Additionally, we split the participants
into groups of lower and higher consistency. For each group, we compare the pre-trained model with one
trained using the InfoTuple active learner to test fine-tuning with more consistent annotations.

We show the e�ect of consistency on the InfoTuple algorithm in Fig. 7. For annotators with low consistency,
the pre-trained network often performs similarly or even better than the finetuned variant. The pre-trained
model is a strong baseline for inconsistent annotators. Fig. 7b shows that consistent annotations allow the
active learner to learn a similar or better model than the pre-trained baseline, with 74% for the finetuned
case vs 69.2% pre-trained on the test set. Appendix A.3 reports dis-aggregated triplet accuracy per user,
supporting the results.

Generally, if the pre-trained network is already performing well on a test set, the fine-tuning with inconsistent
data tends to decrease test triplet accuracy. It depends on the consistency of the similarity function used for
annotations if fine-tuning is beneficial. For consistent participants, that also tend to be self-assessed experts,
better user-specific similarity functions can be learned.

Furthermore, with InfoTuple as the AL sampler, we see strong increases in triplet accuracy over the pre-
trained baseline (see Fig. 7). The most consistent 2

3 participants lead to more stable learning and higher
triplet accuracy, which is likely due to their more consistent replies or clearer notion of similarity (see Fig. 7b).

(a) Least consistent 1
3 on Rnd. (b) Most consistent 2

3 on Rnd.

Figure 7: This figure shows the e�ectiveness of fine-tuning via InfoTuple active learning in comparison
to the pre-trained baseline for di�erent levels of consistency. Participants are grouped according to their
consistency, into a least consistent third and the most consistent two-thirds. Relative gains are greater for
more consistent replies.
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(a) Response E�ectiveness over the number
of acquisitions.

(b) The response times per phase, here as box
plots over all users, show a relatively stable mean
around 10 s for each phase of the procedure.

Figure 8: We present the triplet accuracy after applying Eq. 9 in (a) and show response times in (b).

4.3 Considering Time and Sampling E�ciency

We consider three di�erent perspectives that shed some light on the relationship between triplet accuracy,
time, and skipping. These metrics are relevant for determining the e�ciency of the time spent, as well as
the potential fatigue of participants.

4.3.1 Response E�ectiveness

The relative return in accuracy on the invested amount of response time is a relevant criterion when choosing a
sampling method. The time that users spend analyzing samples and forming decisions may also be indicative
of how di�cult a query is to reply to. This excludes the time that methods require to propose queries.

We evaluate the response time for all users by dividing the relative gains in predictive accuracy by the
participant’s average response time. This yields a relative improvement in accuracy per time spend on a
response.

We normalize triplet accuracy using Eq. 9 and report the results in Fig. 9. There, we see the highest increase
in triplet accuracy for InfoTuple, followed by the NN active learner. The Random baseline follows closely.
Interestingly, the strongest method InfoTuple is also the one that is replied to quickest. The response times
of the 5 methods in our study are: Random with 9.7 s, Random/NN with 10.98 s, NN with 10.35 s, and
the active samplers NN with 11.19 s and InfoTuple with 9.48 s, see Fig. 8b for an overview and Fig 14 in
Appendix A.3 for user-specific details.

The relative return in accuracy should not be bought with exorbitant amounts of time. Our results show
that both active learners perform comparably well due to their higher relative gains in accuracy compared
to the baselines, which speaks for them as tuple composition methods.

4.3.2 Total E�ectiveness

While the response time itself is important for choosing a suitable sampling method, the overall time spent
may also include an active method’s computational overhead. The analysis is similar to Sec. 4.3.1 but also
includes the time of methods to compute queries on top.

The algorithm execution times cause minor decreases in total e�ectiveness for the two Active Learning
methods. The Nearest Neighbor active learner computes for 2.8 s (± 0.59 s) and the InfoTuple active learner
needs 6.11 s (± 0.56 s). However, this depends mainly on the computational power and implementation
e�ciency. In this work, we optimized InfoTuple to decrease its complexity while still providing benefits over
others.

Computation, such as the training of the neural network or the calculations performed by InfoTuple, impacts
the accuracy-per-time e�ciency. However, while we consider the cognitive load for participants to be taxing,
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the waiting time between queries may be less demanding. In our user study, the additional waiting time
of the active methods was still reported as tough by several participants and should be considered when
selecting a method.

4.3.3 Label E�ectiveness

We consider the number of skips during the labeling process as a potential source of participants’ fatigue,
because it takes longer to reach the set number of annotations. Hence, participants are queried repeatedly.
Higher label e�ectiveness is to be preferred, see Eq. 11.

We present the least, the median, and the most consistent participants’ timeline of skipped and annotated
queries in Fig. 9 to highlight the prolonging e�ect, that a large number of skipped queries has on the duration
of the experiment, and thus also on the participants’ fatigue. In addition, we use Eq. 11 to calculate the
label e�ectiveness of the di�erent sampling methods. We report the details in Fig. 14 in Appendix A.3 and
discuss the findings here.

The NN active learner combines an apparently easier-to-answer query composition with the benefits of active
learning and increases accuracy (by the number of skipped queries) with LE = 1.95%, followed by non-active
with LE = 1.39%. InfoTuple follows closely with LE = 1.26% due to its raw gains of accuracy. Even though
more queries were skipped, responses were more informative overall. Random and Random/NN sampling
score worst due to the high amount of skips or lower gains in accuracy with LE = 0.75% and LE = 0.35%
respectively. Furthermore, we may infer that skipping unsuitable queries may be necessary to annotate
more consistency, see p6 with p15 or p11 in Fig. 9. The mean percentage of skipped samples is 22.22% for
NN queries, closely followed by Random/NN sampling (22.36%) and the NN active learner (24.53%). Both
methods compose queries from close neighbors of the query anchor, i.e., likely similar samples. InfoTuple
queries are skipped 50.1% of the time and random tuples form the rear with 53.97%.

The methods that primarily focus on NN sampling perform best due to the higher likelihood of positive
samples in a query. InfoTuple samples from a larger pool of most informative samples, which may cause
participants to skip more queries. However, its queries tend to be more informative so that InfoTuple keeps
up with the other methods.

(a) Skips vs responses p6. (b) Skips vs responses p15. (c) Skips vs responses p11.

Figure 9: All response times for the least, the median, and the most consistent participant. We highlight
the annotation phases.

4.4 Data Augmentation with Annotations

Participants’ similarity functions may align well enough to profit from combining their annotations in order to
augment their training dataset. This would increase sampling e�ciency, as a larger collection of annotations
would be available for warm-starting the training. Due to the comparable levels of intra-rater consistency
and inter-rater reliability, such clusters seem realistic.

Our analysis selects the pair of participants with the highest inter-rater reliability. We exclude skipped
samples and we select the pair with more consistent participants. we then initialize the training dataset with
the combined set of both participants’ Repeat #1 replies, fine-tune one model for each participant on their
annotations selected by InfoTuple, and test on the participants’ own test sets. Recall that since the queries,

15



Published in Transactions on Machine Learning Research (04/2023)

Figure 10: The e�ectiveness of grouping the training data from participants with similar consistency and
notions of similarity. It can be beneficial to combine their warm-up training datasets to increase triplet
accuracy.

that make up the Repeat #1 data are identical, the combined annotations augment the training with replies
to skipped queries and can even contain di�erent replies.

We select the participants p3, p11, and p18 according to the hierarchical clustering in Fig. 5, because p11 is
the most consistent participant overall. The results in Fig. 10 show the respective participant’s di�erences
on the test set. Two of the participants benefit from additional annotations, the third sees a further decrease
in accuracy.

Augmenting the warm-start dataset with the annotations of similar annotators can be beneficial. Our
results for a triplet of participants, which also includes the highest inter-rater reliability, confirm it. This
suggests that similarity functions may be clustered and used for transfer learning. However, our additional
experiments with larger clusters yield diminishing returns and confirm our pre-study’s findings, likely due
to lower inter-rater reliability.

4.5 Discussion

RQ1: How consistent and reliable are the participants?
Our evaluation shows that the participants are able to respond to the queries with relatively high quality, as
their intra-rater consistency is in the range of 0.498 (±0.11) on average. Their self-assessment in the range
of 1 to 6 is relatively consistent with a divergence of 20%, which we show indicates whether a user-specific
data collection is beneficial. Furthermore, we found that noisy oracles a�ect the network’s ability to learn
user-specific similarity functions. However, even though the more consistent group benefited more from
fine-tuning, the tendency does also points towards a smaller increase for less consistent annotators.

RQ2: What is the best baseline heuristic to generate tuple queries?
The composition of tuple queries has implications beyond the learned model’s triplet accuracy. Participants
may take longer to respond or even find no response at all, which ultimately leads to fatigue. We show
in Fig. 6 that the heuristics Random and NN yield a very similar triplet accuracy with Random/NN as a
close third. However, once we account for the average response time, the gap between NN and Random
on the one hand, and Random/NN on the other increases. We see two possible explanations. First, the
Nearest Neighbor sampling generates queries from the relatively sparse Euclidean embedding, that are more
likely to contain easy positives that participants select more quickly. Conversely, queries generated by the
Random heuristic contain easy negative samples and are often quickly skipped, see Fig. 9. The skipping
renders Random sampling less e�cient, as the procedure’s sampling phases require more queries to collect
the same number of annotations, which leads to higher fatigue. Finally, the combination of Random/NN
mixes easy positives and negatives and seems to require closer inspection by participants and is less sample
e�cient because of this, see Fig. 8b.

Overall, the NN heuristic balances the three metrics triplet accuracy, time spent on responses, and the
number of skips and fatiguing of participants better than the other baselines Random and Random/NN.
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RQ3: Does an active sampling method perform better than baselines?
We show that annotations can be more valuable due to Active Learning, as the di�erences between ActiveNN
and the baseline NN heuristics show. Furthermore, selecting informative samples with InfoTuple increases
sample e�ciency compared to ActiveNN, because a purely NN-query may not be maximally informative due
to the sparse similarity of our problem domain. Response times are comparable to the heuristic baselines.
Interestingly, the increases in accuracy per skipped sample are in favor of the ActiveNN sampler compared
to InfoTuple, while the absolute triplet accuracy of models trained using InfoTuple is higher. Additionally,
we show that the gained accuracy per time justifies the computational complexity of AL. Overall, Active
Learning and specifically InfoTuple perform better than heuristic baselines.

Quality of Annotations
The quality of annotations is an important factor in machine learning. Specifically for Active Learning,
applications typically deal with expensive domain experts, that may perform more reliably, but whose time
is more expensive. Alternatively, non-expert annotators may seem more cost-e�ective but are likely to be
less reliable (Wu et al., 2020). In our study, we address the scenario of mixed expertise and evaluate the deep
metric learning objective with respect to quantitative and self-assessment. We show that self-assessment can
be predictive of the usefulness of Active Learning compared to a strong baseline metric learner. We show
that transfer learning can be applied successfully using more consistent, and potentially also semantically
similar annotations.

Broader Applicability of the Proposed Method
The ideas proposed in this paper are twofold. First, the proposed deep active learning method may be applied
to other tasks. Learning similarity of trajectory data is a common problem, e.g., in other team sports like
basketball (Sha et al., 2016), hockey (Chen et al., 2005) or Australian football (Alexander et al., 2022), in
animal farming (Chen et al., 2005), or in personal mobility, tra�c or public transportation (Shen et al., 2019;
Yadamjav et al., 2020; Fernández et al., 2017). Still, the propose method uses a flexible learner that may be
adapted for other data than trajectories, e.g., learning similarity in image datasets such as Food73 (Wilber
et al.) or ranking the age of faces (Liu et al.) and learning similarity between texts (Neculoiu et al.).
Generally, the proposed method may be considered with the aim to train (or fine-tune) a generalizing Metric
Learner from few relative comparisons of large tuple size with the help of a human-in-the-loop.

Broader Evaluation of Active Learning
The second idea that we propose is our call for a broader evaluation of new active learning algorithms. In
Active Learning, the predominant performance metric seems to be accuracy per labeled sample. There are,
however, additional practically important considerations besides accuracy. Experimental platforms, such as
NEXT (Jamieson et al., 2015), capture detailed statistics on, e.g., network response time, timing data that
helps to estimate human fatigue, and also the quality of annotations, i.e., via intra-rater agreement. More
recent AL studies Canal et al. (2020) additionally analyze the tasks’ di�culty and response time. Hence,
in our work, we do not only rank methods by accuracy. Our analysis of e�ective accuracy over (total) time
spent on responding, and the e�ciency of accuracy by skipped queries support the results. The adapted
InfoTuple method, which evaluates the Nearest Neighbors sampled from the neural network embedding,
shows to be less fatiguing as well.

5 Related Work

Many approaches for deep metric learning use triplets to learn generalizing representations (Ho�er & Ailon,
2015; Xuan et al., 2020). Recently, Xuan et al. (2020) introduced the idea of sampling triplets with easy
positive examples. This addresses the issue of over-clustering of the learned embedding, and it is tolerant
of high-class variance. This is highly relevant to our study because it motivates the composition of tuple
queries. Our study evaluates the e�ect of easy positive and negative samples with a human-in-the-loop.

Active learning uses insights into the data distribution or model views to select the sample(s) that best
improves the model’s fit of the underlying data distribution. We can group approaches for deep learning into
di�erent categories. Some estimate model uncertainty to select the most informative (Houlsby et al., 2011;
Kirsch et al., 2019) or uncertain samples (Gal et al., 2017; Beluch et al., 2018), others select representative
samples using a covering set (Sener & Savarese, 2018) or combine diverse and uncertain selections (Ash
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et al., 2020). Nadagouda et al. (2022) use information theory to perform active metric learning and active
classification on a deep probabilistic model that uses Monte Carlo dropout sampling (Gal & Ghahramani,
2016) as an approximation of uncertainty. They sample the most informative NN queries from all possible
ones. Similarly, Canal et al. (2020) learn an ordinal embedding by maximizing the mutual information of
queries to an oracle. Their work is based on a probabilistic model, fitted to relative comparisons, that learns
the ordinal embedding. Both Nadagouda et al. (2022) and Canal et al. (2020) use larger tuple sizes than
three, which improves sample e�ciency and also provides more context for easier annotations.

Information retrieval from multi-agent trajectory datasets has to first solve the assignment problem of these
agents’ trajectories (Sha et al., 2017; 2016; Lö�er et al., 2020), and second, provide a quickly searchable
representation (Sha et al., 2016; 2017; Di et al., 2018; Lö�er et al., 2020). Di et al. (2018) additionally
learn ranking from humans. They estimate the assignment of agents (players) within a tree-structure (Sha
et al., 2017) and then train a convolutional autoencoder on 2D trajectory plots to extract features. In
contrast, we train one neural network Lö�er et al. (2020), that learns to solve the assignment problem and
produces a lower dimensional embedding, such that additional tree structures are redundant and search
is accelerated. Di et al. (2018) learn ranking from participants of a click-through study, that collects
only pairwise comparisons, and trains a linear rankSVM on these tuples and the extracted features of the
autoencoder. This approach di�ers from this paper, as we optimize the network’s embedding directly.
However, the embedding may be used for on-top learning to rank approaches (Di et al., 2018) or even active
embedding search (Canal et al., 2019).

6 Conclusion

In this work, we studied how to learn unknown similarity functions, that humans innately use to measure
similarity between instances in an unlabeled, unstructured dataset. To learn these metrics from few anno-
tations, we adapted mining easy positive triplets from a query sample’s neighborhood in a neural network’s
embedding space and applied InfoGain to construct the most meaningful queries from the sparse similarity
of a football trajectory dataset. Our user study shows the benefits of this method and provides a nuanced
evaluation with respect to accuracy and the practical considerations of the e�ectiveness of Active Learning
with a human-in-the-loop: response, total and label e�ectiveness. An accompanying survey sheds light on
the mixed expertise of participants, their diverse notions of similarity, and their relation to a strong metric
learning baseline. Future work may leverage the user-specific ordinal embedding to perform an iterative
active search, that can further improve information retrieval.
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A Appendix

A.1 Pre-Study

We conducted a pre-study to set the size of InfoTuple and also the number of required annotations for user-
individual model training. We furthermore have discovered that a model would not generalize well from the
complete, diverse group to one hold-out user. We also collected feedback on the introduction (tutorial) and
query format, which helped to improve it and to avoid confusion among participants.

Size of InfoTuple. The pre-study was conducted with 7 participants, that were split into two groups A

with 4 participants and B with 3 participants. Group A was queried with tuples of size 7 (1 head, 6 body),
and group B with smaller tuples of size 4 (1 head, 3 body). We monitored response times and found that
both groups responded within a similar amount of time. Furthermore, participants of group B reported
that they often could not select a similar sample. Hence, we determined that a larger tuple size would
not negatively impact response times, but would provide additional context that would help respond to the
query, consistent with Canal et al. Canal et al. (2020).

Count of InfoTuple. Second, we set the required number of annotated triplets by, first, collecting 500
annotated triplets per participant, and second, fine-tuning a model for each in increasing sub-sets sizes, that

21



Published in Transactions on Machine Learning Research (04/2023)

group notion example
semantic team movement direction (attack or defense); dynamic or static

ball movement pass or shot; short or long; at rest
semantic category standards (kicko�); situations (pressuring, passing, shot);

consistency of category
team formation compact; shifting; o�ensive or defensive
area which third; which flank

proximity player and ball Are there players near the ball?
directions direction of ball trajectory
length of trajectory
distances spatial proximity similar in candidate scenes

Table 1: Qualitative clustering of responses to questionnaire into semantic and proximity.

we randomly sampled from the total pool. The increase in accuracy converged over the increasing number
of training data. Hence, we chose to collect 20 InfoTuple of size 8 (140 triplets) per method, as more showed
diminishing returns.

Individual or general model. Lastly, we observed that we were not able to train one model by combining
the training data from all participants into one large pool. We used leave-one-out cross-validation to train
on all but one participant and then tested on the remaining participant as a hold-out test dataset. The
general model did not achieve as good results as training an individual model. Hence, we designed the user
study such that individual models were trained.

A.2 Notions of Similarity

We hypothesize that di�erent notions of similarity may either already be captured by the Euclidean distance
metric, or can be learned better from annotations. Recall that we have collected additional metadata on
participants’ notion of similarity using a questionnaire, see Sec. 3.2. This may help distinguish participant
groups.

We test this hypothesis by analyzing the participants’ responses to the questionnaire and extract two sets
of rules, that we categorize as either semantic or proximity. Semantic rules describe the scenes’ semantics
whereas proximity rules largely ignore such interpretations. They instead pay closer attention to proximity
or only to subsets of trajectories. To reduce bias, we ask two raters to assign participants to either group
and then have the raters resolve their disagreements through an analytical discussion. Here, we compare the
triplet accuracy of the agreed-upon group compositions.

(a) proximity notion on Rnd. (b) semantic notion on Rnd.

Figure 11: This figure distinguishes two types of similarity and shows the e�ectiveness of fine-tuning via
InfoTuple active learning in comparison to the pre-trained baseline. Participants are grouped by their
qualitative description of similarity, that is either proximity or semantic.

We show the extracted groups in Table 1 and each group’s triplet accuracy in Fig. 11. We assign participants
to either group if they describe a specific notion or provide examples that match it. The resulting proximity
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group contains 8 participants and the semantic group 8, too. We excluded a participant that did not describe
their notion and another that did not fit into any. We observe that high self-assessed expertise correlates with
an assignment to the semantic group. Furthermore, we see an increase in triplet accuracy from pre-trained
models to fine-tuned models for both groups in Fig. 11.

The increase in triplet accuracy is visible for both the semantic and the proximity groups. Hence, we can not
show a di�erence from qualitative clustering of notions of similarity. However, fine-tuning can outperform
the Siamese baseline in both cases, because the Euclidean similarity metric does not adequately capture
either group’s similarity function. In future work, alternative interpretations of qualitative and quantitative
data may find a more suitable (sub) group segmentation.

A.3 Additional Results

Fig. 12 shows the e�ectiveness of fine-tuning compared to the Siamese baseline per participant. Fig. 13
shows every participant’s response times for each phase. Finally, Fig. 14 shows the adapted triplet accuracy
for three variants of e�ectiveness: response, total and label e�ectiveness.

Figure 12: The e�ectiveness of all fine-tuning variants (violin plot) in comparison to the pre-trained Siamese
network (horizontal bar) shows the impact of inconsistent oracles and a performance ceiling for the relatively
noisy train and test data.

Figure 13: We show all users’ response times for each phase ordered by consistency.
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(a) Accuracy per response time. (b) Accuracy per total time. (c) Accuracy per skipped samples.

Figure 14: We average the results for all users on the test dataset. (a) shows the triplet accuracy per response
time spent. (b) shows the triplet accuracy per time including compute time, which depends on compute
resources and may limit the experiment’s scale. (c) shows the triplet accuracy over the number of skips,
which can cause fatigue.

A.4 Evaluation of Ellipse Template

We present the experimental comparison of our proposed ellipse template matching algorithm from Sec. 2
with the assignment methods proposed by Lö�er et al. (2021). Their best-performing method uses an over-
determined role position assignment, that introduces sparsity in the inputs of the Siamese network because
there are more positions in the template than trajectories in the scene. Our proposed ellipse template has
the same number of positions as there are trajectories, and we fit the template to each scene, see Sec. 2 for
details.

We reproduce the results of Lö�er et al. (2021) and compare them with our proposed template matching
algorithm. For that, we use a Siamese network with an embedding size of 64, pre-train it on 304 games (see
Section 3.4), and perform an evaluation of ours and their method on the same subset of the dataset that
we use in our main study. We follow their evaluation scheme and calculate the structural correspondence
between the original data and the learned representations. They define the Mean Absolute Percentage Error
(MAPE) as the expected absolute error relative to the ground truth, as

MAPED = 1
|D|

|D|ÿ

i=1
|
dens(Xi,1, Xi,2) ≠ d̂ens(f(Xi,1), f(Xi,2))

dens(Xi,1, Xi,2) |. (12)

where they sample and compare pairs of matrices Xi,1 and Xi,2 from a dataset of matrix pairs D. We adapt
our notation from Sec. 2 slightly, such that Xi,1 refers to the first matrix of the ith pair and Xi,2 to the
second matrix. Likewise, f(Xi,1) refers to the learned representation of Xi,1.

For their best performing method role position, Lö�er et al. (2021) report a MAPE of 2.66% on their
validation and 2.68% on their test set. Paired with the embedding size of 64, this also achieves speedy
retrieval due to the lower dimensionality. We reproduce a similar MAPE of 2.669% on our dataset, which
is in line with their results. In comparison, our ellipse template achieved a MAPE of 2.31% with the same
hyperparameters. This clearly shows the benefits of our proposed method, as its error is 0.359% lower, and
at the same time, it eliminates input sparsity.

A.5 Instructions

The user study uses a web-based annotation tool, that begins with a landing page with a short introduction.
Participants are first presented with an introduction that familiarizes them with the data, the task, and
the mechanics of the annotation tool. Fig. 15 shows the explanation of the data and description of details.
Fig. 16 then describes the participant’s task in this study. Finally, Fig. 17 shows an example of a query and
once more explains the mechanics of the annotation process. After this participants begin annotating the
warm-up samples with a button press.
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Figure 15: The landing page begins with an introduction to the dataset.

Figure 16: The next part describes the task and familiarizes participants with their options.
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Figure 17: An example concludes the explanation and previews the annotation task that follows.
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